

aerospace climate control electromechanical filtration fluid & gas handling hydraulics pneumatics process control sealing & shielding

ENGINEERING YOUR SUCCESS.

Marning – User responsibility

FAILURE OR IMPROPER SELECTION OR IMPROPER USE OF THE PRODUCTS DESCRIBED HEREIN OR RE-LATED ITEMS CAN CAUSE DEATH, PERSONAL INJURY AND PROPERTY DAMAGE.

- This document and other information from Parker-Hannifin Corporation, its subsidiaries and authorized distributors provide product or system options for further investigation by users having technical expertise.
- The user, through its own analysis and testing, is solely responsible for making the final selection of the system and components and assuring that all performance, endurance, maintenance, safety and warning requirements of the application are met. The user must analyze all aspects of the application, follow applicable industry standards, and follow the information concerning the product in the current product catalog and in any other materials provided from Parker or its subsidiaries or authorized distributors.
- To the extent that Parker or its subsidiaries or authorized distributors provide component or system options based upon data or specifications provided by the user, the user is responsible for determining that such data and specifications are suitable and sufficient for all applications and reasonably foreseeable uses of the components or systems.

I-FORCE Ironless linear motors

Parker Trilogy's I-Force ironless linear motors offer high forces and rapid accelerations in a compact package. With forces ranging from 5.5 lbf (24.5 N) - 197.5 lbf (878.6 N) continuous up to 5.5 lbf (24.5 N) - (883 lbf (3928 N) peak, the I-Force family offers a superior combination of performance and size.

The I-Force patented I-beam shape with its overlapping windings allows for a higher power density in a smaller motor, improved heat removal, and added structural stiffness. In addition, the ironless (or air core) linear motor design has no attractive force toward the magnets. This allows for easy installation and zero cogging during motion.

Ultra high-flex cables come standard with I-Force motors. In addition, we offer modular magnet tracks for unrestricted travel length. Incredibly smooth motion, high precision and high force density make the I-Force linear motors an ideal solution for your demanding positioning requirements.

Overlapping Windings:

- Increased force density
- Improved heat dissipation
- Lower temperature rise
- Smaller, less expensive motor
- No attractive force toward the magnets:

• Easier/Safer assembly and handling, smoother travel (no cogging) Uses thermally conductive epoxy together with the windings (Patented RE34674):

Better heat dissipation

Vacuum encapsulation process:

- Allows motors to be used in high-vacuum environments
- (Rated at 10^-6 torr, currently used in 10^-7 torr applications)

Modular magnet track:

- Unrestricted travel length
- Embedded overtemp thermostat or optional thermistor:
 - Protects windings against overheating

Ultra high-flex cables:

• Longer cable life, good for millions of cycles

110 Specifications

FORCE

- Ironless motor, patented, RE34674
- Cross-section: 2.05"H (50mm) x 0.82"W (21mm)
- Peak forces in two sizes to 45lbs (200N), continuous forces to 10lbs (44N)
- Precision ground 3-piece track (110 model)
- Two lengths of modular magnet tracks allow unlimited length of travel
- Single-piece magnet tracks to 36" length
- Prealigned imbedded digital Hall effect devices
- Internal thermal cutout switch protects coil

PERFORMANCE

MOTOR MODEL		110-1	110-2	
Peak Force	Ν	108.5	202.5	
	lb	24.4	45.5	
Continuous Force	Ν	24.5	45.4	
	lb	5.5	10.2	
Peak Power	W	938	1641	
Continuous Power	W	47	82	

ELECTRICAL

MOTOR MODEL			110-1			110-2	
WIRING TYPE	UNITS	S-Series	P-Parallel	T-Triple	S-Series	P-Parallel	T-Triple
Peak Current	A pk sine	15.9	31.8	47.7	14.8	29.6	44.4
	(RMS)	11.2	22.5	33.7	10.4	20.9	31.4
Continuous Current	A pk sine	3.6	7.2	10.8	3.3	6.6	9.9
	(RMS)	2.5	5.1	7.6	2.3	4.7	7.0
Force Constant	N/A peak	6.8	3.4	2.3	13.7	6.8	4.6
	lb/A peak	1.5	0.8	0.5	3.1	1.5	1.0
Back EMF	V/m/s	7.9	3.9	2.6	15.7	7.9	5.2
	V/in/s	0.20	0.10	0.07	0.40	0.20	0.13
Resistance 25°C, phase to phase	ohms	3.8	1.0	0.4	7.6	1.9	1.0
Inductance, phase to phase	mH	1.0	0.3	0.1	2.0	0.5	0.2
Electrical Time Constant	ms	0.3	0.3	0.3	0.3	0.3	0.3
Motor Constant	N/W	3.56	3.56	3.56	5.02	5.02	5.02
	lb/W	0.80	0.80	0.80	1.13	1.13	1.13
Max Terminal Voltage	VDC	330	330	330	330	330	330

THERMAL				
MOTOR MODEL		110-1	110-2	
Thermal Resistance Wind-Amb	degC / W	1.59	0.92	
Thermal Time Constant	min	3.2	3.2	
Maximum Winding Temperature	°C	100	100	
MECHANICAL				
MOTOR MODEL		110-1	110-2	
Coil Weight	kg	0.12	0.22	
	lb	0.27	0.48	
Coil Length	mm	81.3	142.2	
	in	3.20	5.60	
Attractive Force	Ν	0	0	
	lbf	0	0	
Electrical Cycle Length	mm	60.96	60.96	
	in	2.40	2.40	

110 Dimensions

Minimum Length: 2.4in/60.96mm

Maximum Length: (For Single Piece) 36in/914.40mm

Weight/Foot: 2.66lbs/ft

Incremental Length: 2.4in/60.96mm

Minimum Length: 2.4in/60.96mm

Maximum Length: (For Single Piece) 36in/914.90mm

Weight/Foot: 2.66lbs/ft

Incremental Length: 1.2in/30.48mm

Minimum Length: 8.4in/213.4mm

Maximum Length: (For Single Piece) 36in/914.90mm

Weight/Foot: 2.66lbs/ft

(A) ENGLISH TOP MOUNTING

SINGLE PIECE 110xxM1

(M) METRIC TOP MOUNTING

(B) ENGLISH SIDE MOUNTING

CUIL SIZE (INCRES)	L	N	A	В	
110-1B	3.20	2	0.80	2.40	
110-2B	5.60	2	0.80	4.80	

(N) METRIC SIDE MOUNTING

COIL SIZE (mm)	L	N	A	В
110-1N	81.3	2	20.3	60.9
110-2N	142.2	2	20.3	121.9

MODULAR TRACK									
LENGTH In Inches	LENGTH In mm	QUANTITY 11007M 11507M	QUANTITY 11009M 11509M						
7.2	182.9	1	0						
9.6	243.8	0	1						
12.0	304.8	0	0						
14.4	365.8	2	0						
16.8	426.7	1	1						
19.2	487.7	0	2						
21.6	548.6	3	0						
24.0	609.6	2	1						
26.4	670.6	1	2						
28.8	731.5	0	3						
31.2	792.5	3	1						
33.6	853.4	2	2						
36.0	914.4	1	3						
38.4	975.4	0	4						
40.8	1036.3	3	2						
43.2	1097.3	2	3						
45.6	1158.2	1	4						
48.0	1219.2	0	5						
50.4	1280.2	3	3						
52.8	1341.1	2	4						
55.2	1402.1	1	5						
57.6	1463.0	0	6						
60.0	1524.0	3	4						
62.4	1585.0	2	5						
64.8	1645.9	1	6						
67.2	1706.9	0	7						
69.6	1767.8	3	5						
72.0	1828.8	2	6						

P/N 110xx S L (in) L (mm) A mm N 11008 S 8.4 205.8 0.20 5.08 3 11009 S 9.6 235.2 0.80 20.32 3 11010 S 10.8 264.6 1.40 35.56 3 11012 S 12.0 294.0 2.00 50.80 3 11012 S 12.0 294.0 2.00 50.80 3 11012 S 12.0 294.0 2.00 50.80 3 11012 S 12.0 294.0 2.00 66.04 3 11013 S 13.2 323.4 2.60 66.04 3 11014 S 14.4 352.8 3.20 81.28 3 11015 S 15.6 382.2 3.80 96.52 3 11018 S 18.0 441.0 1.00 25.40 5 11020 S 20.4 499.8 2.20 55.88 5 11021 S 21.6				10xxS			
11009 S 9.6 235.2 0.80 20.32 3 11010 S 10.8 264.6 1.40 35.56 3 11012 S 12.0 294.0 2.00 50.80 3 11013 S 13.2 323.4 2.60 66.04 3 11014 S 14.4 352.8 3.20 81.28 3 11015 S 15.6 382.2 3.80 96.52 3 11016 S 16.8 411.6 0.40 10.16 5 11018 S 18.0 441.0 1.00 25.40 5 11019 S 19.2 470.4 1.60 40.64 5 11020 S 20.4 499.8 2.20 55.88 5 11021 S 21.6 529.2 2.80 71.12 5 11022 S 22.8 558.6 3.40 86.36 5 11024 S 24.0 588.0 4.00 101.60 5 11025 S 25.2 617.4 0.60 15.24 7 11026 S 26.4 <t< th=""><th>P/N 110xx</th><th>S</th><th>L (in)</th><th>L (mm)</th><th>А</th><th>mm</th><th>N</th></t<>	P/N 110xx	S	L (in)	L (mm)	А	mm	N
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	11008	S	8.4	205.8	0.20	5.08	3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	11009	S	9.6	235.2	0.80	20.32	3
11013 S 13.2 323.4 2.60 66.04 3 11014 S 14.4 352.8 3.20 81.28 3 11015 S 15.6 382.2 3.80 96.52 3 11016 S 16.8 411.6 0.40 10.16 5 11018 S 18.0 441.0 1.00 25.40 5 11019 S 19.2 470.4 1.60 40.64 5 11020 S 20.4 499.8 2.20 55.88 5 11021 S 21.6 529.2 2.80 71.12 5 11022 S 22.8 558.6 3.40 86.36 5 11024 S 24.0 588.0 4.00 101.60 5 11025 S 25.2 617.4 0.60 15.24 7 11026 S 26.4 646.8 1.20 30.48 7 11027 S 27.6 676.2 1.80 45.72 7 11028 S 28.8 705.6 2.40 60.96 7 11031 S 31.2 <	11010	S	10.8	264.6	1.40	35.56	3
11014 S 14.4 352.8 3.20 81.28 3 11014 S 14.4 352.8 3.20 81.28 3 11015 S 15.6 382.2 3.80 96.52 3 11016 S 16.8 411.6 0.40 10.16 5 11018 S 18.0 441.0 1.00 25.40 5 11019 S 19.2 470.4 1.60 40.64 5 11020 S 20.4 499.8 2.20 55.88 5 11021 S 21.6 529.2 2.80 71.12 5 11022 S 22.8 558.6 3.40 86.36 5 11024 S 24.0 588.0 4.00 101.60 5 11025 S 25.2 617.4 0.60 15.24 7 11026 S 26.4 646.8 1.20 30.48 7 11027 S 27.6 676.2 1.80 45.72 7 11028 S 28.8 705.6 2.40 60.96 7 11030 S 30.0 <	11012	S	12.0	294.0	2.00	50.80	3
11015 S 15.6 382.2 3.80 96.52 3 11016 S 16.8 411.6 0.40 10.16 5 11018 S 18.0 441.0 1.00 25.40 5 11019 S 19.2 470.4 1.60 40.64 5 11020 S 20.4 499.8 2.20 55.88 5 11021 S 21.6 529.2 2.80 71.12 5 11022 S 22.8 558.6 3.40 86.36 5 11024 S 24.0 588.0 4.00 101.60 5 11025 S 25.2 617.4 0.60 15.24 7 11026 S 26.4 646.8 1.20 30.48 7 11027 S 27.6 676.2 1.80 45.72 7 11028 S 28.8 705.6 2.40 60.96 7 11030 S 30.0 735.0 3.00 76.20 7 11031 S 31.2 764.4 3.60 91.44 7 11032 S 32.4 <	11013	S	13.2	323.4	2.60	66.04	3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	11014	S	14.4	352.8	3.20	81.28	3
11018 S 18.0 441.0 1.00 25.40 5 11019 S 19.2 470.4 1.60 40.64 5 11020 S 20.4 499.8 2.20 55.88 5 11021 S 21.6 529.2 2.80 71.12 5 11022 S 22.8 558.6 3.40 86.36 5 11024 S 24.0 588.0 4.00 101.60 5 11025 S 25.2 617.4 0.60 15.24 7 11026 S 26.4 646.8 1.20 30.48 7 11027 S 27.6 676.2 1.80 45.72 7 11028 S 28.8 705.6 2.40 60.96 7 11030 S 30.0 735.0 3.00 76.20 7 11031 S 31.2 764.4 3.60 91.44 7 11032 S 32.4 793.8 0.20 5.08 9 11033 S 33.6 823.2 0.80 20.32 9 11034 S 34.8 <t< td=""><td>11015</td><td>S</td><td>15.6</td><td>382.2</td><td>3.80</td><td>96.52</td><td>3</td></t<>	11015	S	15.6	382.2	3.80	96.52	3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	11016	S	16.8	411.6	0.40	10.16	5
11020 S 20.4 499.8 2.20 55.88 5 11021 S 21.6 529.2 2.80 71.12 5 11022 S 22.8 558.6 3.40 86.36 5 11024 S 24.0 588.0 4.00 101.60 5 11025 S 25.2 617.4 0.60 15.24 7 11026 S 26.4 646.8 1.20 30.48 7 11027 S 27.6 676.2 1.80 45.72 7 11028 S 28.8 705.6 2.40 60.96 7 11030 S 30.0 735.0 3.00 76.20 7 11031 S 31.2 764.4 3.60 91.44 7 11032 S 32.4 793.8 0.20 5.08 9 11033 S 33.6 823.2 0.80 20.32 9 11034 S 34.8 852.6 1.40 35.56 9	11018	S	18.0	441.0	1.00	25.40	5
11021 S 21.6 529.2 2.80 71.12 5 11022 S 22.8 558.6 3.40 86.36 5 11024 S 24.0 588.0 4.00 101.60 5 11025 S 25.2 617.4 0.60 15.24 7 11026 S 26.4 646.8 1.20 30.48 7 11027 S 27.6 676.2 1.80 45.72 7 11028 S 28.8 705.6 2.40 60.96 7 11030 S 30.0 735.0 3.00 76.20 7 11031 S 31.2 764.4 3.60 91.44 7 11032 S 32.4 793.8 0.20 5.08 9 11033 S 33.6 823.2 0.80 20.32 9 11034 S 34.8 852.6 1.40 35.56 9	11019	S	19.2	470.4	1.60	40.64	5
11022 S 22.8 558.6 3.40 86.36 5 11024 S 24.0 588.0 4.00 101.60 5 11025 S 25.2 617.4 0.60 15.24 7 11026 S 26.4 646.8 1.20 30.48 7 11027 S 27.6 676.2 1.80 45.72 7 11028 S 28.8 705.6 2.40 60.96 7 11030 S 30.0 735.0 3.00 76.20 7 11031 S 31.2 764.4 3.60 91.44 7 11032 S 32.4 793.8 0.20 5.08 9 11033 S 33.6 823.2 0.80 20.32 9 11034 S 34.8 852.6 1.40 35.56 9	11020	S	20.4	499.8	2.20	55.88	5
11024 S 24.0 588.0 4.00 101.60 5 11025 S 25.2 617.4 0.60 15.24 7 11026 S 26.4 646.8 1.20 30.48 7 11027 S 27.6 676.2 1.80 45.72 7 11028 S 28.8 705.6 2.40 60.96 7 11030 S 30.0 735.0 3.00 76.20 7 11031 S 31.2 764.4 3.60 91.44 7 11032 S 32.4 793.8 0.20 5.08 9 11033 S 33.6 823.2 0.80 20.32 9 11034 S 34.8 852.6 1.40 35.56 9	11021	S	21.6	529.2	2.80	71.12	5
11025 25.2 617.4 0.60 15.24 7 11026 26.4 646.8 1.20 30.48 7 11027 27.6 676.2 1.80 45.72 7 11028 28.8 705.6 2.40 60.96 7 11030 30.0 735.0 3.00 76.20 7 11031 31.2 764.4 3.60 91.44 7 11032 32.4 793.8 0.20 5.08 9 11033 33.6 823.2 0.80 20.32 9 11034 34.8 852.6 1.40 35.56 9	11022	S	22.8	558.6	3.40	86.36	5
11026 S 26.4 646.8 1.20 30.48 7 11027 S 27.6 676.2 1.80 45.72 7 11028 S 28.8 705.6 2.40 60.96 7 11030 S 30.0 735.0 3.00 76.20 7 11031 S 31.2 764.4 3.60 91.44 7 11032 S 32.4 793.8 0.20 5.08 9 11033 S 33.6 823.2 0.80 20.32 9 11034 S 34.8 852.6 1.40 35.56 9	11024	S	24.0	588.0	4.00	101.60	5
11027 S 27.6 676.2 1.80 45.72 7 11028 S 28.8 705.6 2.40 60.96 7 11030 S 30.0 735.0 3.00 76.20 7 11031 S 31.2 764.4 3.60 91.44 7 11032 S 32.4 793.8 0.20 5.08 9 11033 S 33.6 823.2 0.80 20.32 9 11034 S 34.8 852.6 1.40 35.56 9	11025	S	25.2	617.4	0.60	15.24	7
11028 S 28.8 705.6 2.40 60.96 7 11030 S 30.0 735.0 3.00 76.20 7 11031 S 31.2 764.4 3.60 91.44 7 11032 S 32.4 793.8 0.20 5.08 9 11033 S 33.6 823.2 0.80 20.32 9 11034 S 34.8 852.6 1.40 35.56 9	11026	S	26.4	646.8	1.20	30.48	7
11030 S 30.0 735.0 3.00 76.20 7 11031 S 31.2 764.4 3.60 91.44 7 11032 S 32.4 793.8 0.20 5.08 9 11033 S 33.6 823.2 0.80 20.32 9 11034 S 34.8 852.6 1.40 35.56 9	11027	S	27.6	676.2	1.80	45.72	7
11031 \$31.2 764.4 3.60 91.44 7 11032 \$32.4 793.8 0.20 5.08 9 11033 \$33.6 823.2 0.80 20.32 9 11034 \$34.8 852.6 1.40 35.56 9	11028	S	28.8	705.6	2.40	60.96	7
11032 S 32.4 793.8 0.20 5.08 9 11033 S 33.6 823.2 0.80 20.32 9 11034 S 34.8 852.6 1.40 35.56 9	11030	S	30.0	735.0	3.00	76.20	7
11033 S 33.6 823.2 0.80 20.32 9 11034 S 34.8 852.6 1.40 35.56 9	11031	S	31.2	764.4	3.60	91.44	7
11034 S 34.8 852.6 1.40 35.56 9	11032	S	32.4	793.8	0.20	5.08	9
	11033	S	33.6	823.2	0.80	20.32	9
	11034	S	34.8	852.6	1.40	35.56	9
11036 S 36.0 882.0 2.00 50.80 9	11036	S	36.0	882.0	2.00	50.80	9

	SINGLE PIECE 110xxM								
P/N 110xx	Μ	L (in)	L (mm)	N					
11002	М	2.4	60.96	1					
11004	Μ	4.8	121.92	2					
11007	М	7.2	182.88	3					
11009	М	9.6	243.84	4					
11012	М	12.0	304.80	5					
11014	М	14.4	365.76	6					
11016	М	16.8	426.72	7					
11019	М	19.2	487.68	8					
11021	М	21.6	548.64	9					
11024	М	24.0	609.60	10					
11026	М	26.4	670.56	11					
11028	Μ	28.8	731.52	12					
11031	Μ	31.2	792.48	13					
11033	М	33.6	853.44	14					
11036	Μ	36.0	914.40	15					

*Please note that 72.0 inches is NOT the maximum length for modular tracks.

M4-0.7 x 3 (2)

0.150

110 Wiring

- 1. Peak force and current based on 5% duty cycle and one second duration.
- 2. Continuous force and current based on coil winding temperature maintained at 100°C.
- Force constant is peak of resistive force produced by 1.0 amp thru one motor lead and 0.5 amps thru other two leads. Also, Back EMF (V/in/sec) * 7.665 = Force constant (Ib/amp).
- 4. Motor resistance measured between any two motor leads with motor connected in Delta winding at 25°C. For temperature at 100°C, multiply resistance by 1.295 (75°C rise * 0.393%/°C)
- Back EMF measured between any two motor leads while moving at constant velocity. Value is amplitude or 0-Peak of sine wave produced.
- 6. Motor inductance measured using 1Kz with the motor in the magnetic field.
- 7. Electrical Time Constant is time it takes for motor value to reach 63% of its final current after a step change in voltage.
- Thermal Time Constant is time it takes for motor temperature to reach 63% of its final value after a step change in power.
- Thermal Resistance is the number of degrees (Celsius) of temperature rise in the winding per watt of power dissipated. Determined experimentally.
- 10. Motor Constant is a measure of efficiency. Calculated by dividing the force constant by the square root of the motor resistance at maximum operating temperature.
- 11. Electrical Cycle Length is distance coil must travel to complete 360° electrical cycle.
- 12. Use TIPS sizing software for the most accurate estimate of coil temperature for a particular motion profile.
- 13. Motors available with nickel plating or black epoxy coating on magnets. Track part number modified with -N or -B at end. Must be specified at time of order.

210 Specifications

FORCE

- Ironless motor, patented, RE34674
- Cross-section: 2.25"H (57.1mm) x 1.25"W (31.7mm)
- Peak forces in four sizes to 110lbs (494), continuous forces to 24.8lb (104.5N)
- Precision ground 3-piece track (210 model)
- Two lengths of modular magnet tracks allow unlimited length of travel
- Prealigned imbedded digital HEDs, also available in separate cable from motor leads
- Internal air cooling manifold standard
- Internal thermal cutout switch protects coil

PERFORMANCE

MOTOR MODEL		210-1	210-2	210-3	210-4
Peak Force	N	137.0	255.8	375.0	494.2
	lb	30.8	57.5	84.3	111.1
Continuous Force	Ν	30.7	57.4	84.1	110.3
	lb	6.9	12.9	18.9	24.8
Peak Power	W	905	1583	2261	2940
Continuous Power	W	45	79	113	147

ELECTRICAL

MOTOR MODEL			210-1			210-2			210-3			210-4	
WIRING TYPE	UNITS	S-Series	P-Parallel	T-Triple									
Peak Current	A pk sine	12.6	25.2	37.8	11.8	23.6	35.4	11.5	23	34.5	11.3	22.6	33.9
	(RMS)	8.9	17.8	26.7	8.3	16.7	25.0	8.1	16.3	24.4	8.0	16.0	23.9
Continuous Current	A pk sine	2.8	5.6	8.4	2.6	5.2	7.8	2.6	5.2	7.8	2.5	5.0	7.5
	(RMS)	1.9	3.9	5.9	1.8	3.7	5.5	1.8	3.7	5.5	1.8	3.5	5.3
Force Constant	N/A peak	10.9	5.4	3.6	21.8	10.9	7.3	32.7	16.4	10.9	43.6	21.8	14.5
	lb/A peak	2.5	1.2	0.8	4.9	2.5	1.6	7.4	3.7	2.5	9.8	4.9	3.3
Back EMF	V/m/s	12.6	6.3	4.2	25.2	12.6	8.4	37.8	18.9	12.6	50.4	25.2	16.8
	V/in/s	0.32	0.16	0.11	0.64	0.32	0.21	0.96	0.48	0.32	1.28	0.64	0.43
Resistance 25°C, phase to phase	ohms	5.9	1.5	0.7	11.8	3.0	1.3	17.7	4.4	2.0	23.6	5.9	2.6
Inductance, phase to phase	mH	2.4	0.6	0.3	4.8	1.2	0.5	7.2	1.8	0.8	9.6	2.4	1.1
Electrical Time Constant	ms	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4
Motor Constant	N/W	4.54	4.54	4.54	6.45	6.45	6.45	7.87	7.87	7.87	9.12	9.12	9.12
	lb/W	1.02	1.02	1.02	1.45	1.45	1.45	1.77	1.77	1.77	2.05	2.05	2.05
Max Terminal Voltage	VDC	330	330	330	330	330	330	330	330	330	330	330	330

THERMAL

MOTOR MODEL		210-1	210-2	210-3	210-4
Thermal Resistance Wind-Amb	degC / W	1.67	0.94	0.66	0.51
Thermal Time Constant	min	4.3	4.3	4.3	4.3
Maximum Winding Temperature	°C	100	100	100	100

MECHANICAL

MOTOR MODEL		210-1	210-2	210-3	210-4
Coil Weight	kg	0.16	0.27	0.39	0.51
	lb	0.35	0.60	0.86	1.12
Coil Length	mm	81.3	142.2	203.2	264.2
	in	3.2	5.6	8.0	10.4
Attractive Force	Ν	0	0	0	0
	lbf	0	0	0	0
Electrical Cycle Length	mm	60.96	60.96	60.96	60.96
	in	2.4	2.4	2.4	2.4

210 Dimensions

Incremental Length:

2.4in/60.96mm

Minimum Length: 2.4in/60.96mm Maximum Length:

(For Single Piece)

Incremental Length:

2.4in/60.96mm

2.4in/60.96mm

48in/1219.2mm

Weight/Foot:

5.50lbs/ft

Minimum Length:

Maximum Length:

Incremental Length:

1.2in/30.48mm

8.4in/213.4mm

48in/1219.2mm Weight/Foot:

Minimum Length:

Maximum Length:

48in/1219.2mm

Weight/Foot:

5.50lbs/ft

5.50lbs/ft

(B) ENGLISH SIDE MOUNTING

(A) ENGLISH TOP MOUNTING

COIL SIZE (inches)	L	N	А	В	C	
210-1A	3.20	5	0.50	1.60	2.70	
210-2A	5.60	5	0.50	2.80	5.10	
210-3A	8.00	5	0.50	4.00	7.50	
210-4A	10.40	5	0.50	5.20	9.90	

(M) METRIC TOP MOUNTING

COIL SIZE (mm)	L	N	Α	В	C	
210-1M	81.3	5	12.7	40.6	68.6	
210-2M	142.2	5	12.7	71.1	129.5	
210-3M	203.2	5	12.7	101.6	190.5	
210-4M	264.2	5	12.7	132.1	251.5	

COIL SIZE (inches)	L	N	А	В	C
210-1B	3.20	2	1.950	2.950	
210-2B	5.60	2	1.625	3.975	
210-3B	8.00	3	2.438	4.000	5.562
210-4B	10.40	3	2.600	5.200	7.800

(N) METRIC SIDE MOUNTING

COIL SIZE (mm)	L	N	А	В	C	
210-1N	81.3	2	49.5	74.9		
210-2N	142.2	2	41.3	101.0		
210-3N	203.2	3	61.9	101.6	141.3	
210-4N	264.2	3	66.0	132.1	198.1	

210 Dimensions

MODULAR TRACK									
LENGTH In Inches	LENGTH In mm	QUANTITY 21007M 21507M	QUANTITY 21009M 21509M						
7.2	182.9	1	0						
9.6	243.8	0	1						
12.0	304.8	0	0						
14.4	365.8	2	0						
16.8	426.7	1	1						
19.2	487.7	0	2						
21.6	548.6	3	0						
24.0	609.6	2	1						
26.4	670.6	1	2						
28.8	731.5	0	3						
31.2	792.5	3	1						
33.6	853.4	2	2						
36.0	914.4	1	3						
38.4	975.4	0	4						
40.8	1036.3	3	2						
43.2	1097.3	2	3						
45.6	1158.3	1	4						
48.0	1219.2	0	5						
50.4	1280.2	3	3						
52.8	1341.1	2	4						
55.2	1402.1	1	5						
57.6	1463.0	0	6						
60.0	1524.0	3	4						
62.4	1585.0	2	5						
64.8	1645.9	1	6						
67.2	1706.9	0	7						
69.6	1767.8	3	5						
72.0	1828.8	2	6						
) inches is N modular trac							

P/N	210xx	S	L (in)	L (mm)	A	mm	N
	21008	S	8.4	205.8	0.20	5.08	3
	21009	S	9.6	235.2	0.80	20.32	3
	21010	S	10.8	264.6	1.40	35.56	3
	21012	S	12.0	294.0	2.00	50.80	3
	21013	S	13.2	323.4	2.60	66.04	3
	21014	S	14.4	352.8	3.20	81.28	3
	21015	S	15.6	382.2	3.80	96.52	3
	21016	S	16.8	411.6	0.40	10.16	5
	21018	S	18.0	441.0	1.00	25.40	5
	21019	S	19.2	470.4	1.60	40.64	5
	21020	S	20.4	499.8	2.20	55.88	5
	21021	S	21.6	529.2	2.80	71.12	5
	21022	S	22.8	558.6	3.40	86.36	5
	21024	S	24.0	588.0	4.00	101.60	5
	21025	S	25.2	614.4	0.60	15.24	7
	21026	S	26.4	646.8	1.20	30.48	7
	21027	S	27.6	676.2	1.80	45.72	7
	21028	S	28.8	705.6	2.40	60.96	7
	21030	S	30.0	735.0	3.00	76.20	7
	21031	S	31.2	764.4	3.60	91.44	7
	21032	S	32.4	793.8	0.20	5.08	9
	21033	S	33.6	823.2	0.80	20.32	9
	21034	S	34.8	842.6	1.40	35.56	9
	21036	S	36.0	882.0	2.00	50.80	9
	21037	S	37.2	911.4	2.60	66.04	9
	21038	S	38.4	940.8	3.20	81.28	9
	21039	S	39.6	970.2	3.80	96.52	9
	21040	S	40.8	999.6	0.40	10.16	11
	21042	S	42.0	1029.0	1.00	25.40	11
	21043	S	43.2	1058.4	1.60	40.64	11
	21044	S	44.4	1127.8	2.20	55.88	11
	21045	S	45.6	1158.2	2.80	71.12	11
	21046	S	46.8	1188.7	3.40	86.36	11
	21048	S	48.0	1219.2	4.00	101.6	11

210xxS

			210xx	M1	
P/N	210xx	M1	L (in)	L (mm)	N
	21002	M1	2.4	60.96	1
	21004	M1	4.8	121.62	2
	21007	M1	7.2	182.88	3
	21009	M1	9.6	243.84	4
	21012	M1	12.0	304.80	5
	21014	M1	14.4	365.76	6
	21016	M1	16.8	426.72	7
	21019	M1	19.2	487.68	8
	21021	M1	21.6	548.64	9
	21024	M1	24.0	609.60	10
	21026	M1	26.4	670.56	11
	21028	M1	28.8	731.52	12
	21031	M1	31.2	792.48	13
	21033	M1	33.6	853.44	14
	21036	M1	36.0	914.40	15
	21038	M1	38.4	975.36	16
	21040	M1	40.8	1036.32	17
	21043	M1	43.2	1097.28	18
	21045	V 1	45.6	1158.24	19
	21048	M1	48.0	1219.20	20

	SIN	IGL	E PIECE	210xx <u>M</u>	
P/N	210xx	М	L (in)	L (mm)	N
	21002	М	2.4	60.96	1
	21004	М	4.8	121.62	2
	21007	М	7.2	182.88	3
	21009	Μ	9.6	243.84	4
	21012	Μ	12.0	304.80	5
	21014	М	14.4	365.76	6
	21016	М	16.8	426.72	7
	21019	М	19.2	487.68	8
	21021	М	21.6	548.64	9
	21024	М	24.0	609.60	10
	21026	М	26.4	670.56	11
	21028	М	28.8	731.52	12
	21031	М	31.2	792.48	13
	21033	М	33.6	853.44	14
	21036	М	36.0	914.40	15
	21038	М	38.4	975.36	16
	21040	М	40.8	1036.32	17
	21043	М	43.2	1097.28	18
	21045	М	45.6	1158.24	19
	21048	М	48.0	1219.20	20

210 Wiring

NOTES

- 1. Peak force and current based on 5% duty cycle and one second duration.
- 2. Continuous force and current based on coil winding temperature maintained at 100°C.
- 3. Force constant is peak of resistive force produced by 1.0 amp thru one motor lead and 0.5 amps thru other two leads. Also, Back EMF (V/in/sec) * 7.665 = Force constant (lb/amp).
- 4. Motor resistance measured between any two motor leads with motor connected in Delta winding at 25°C.
- For temperature at 100°C, multiply resistance by 1.295 (75°C rise * 0.393%/°C). 5. Back EMF measured between any two motor leads while moving at constant velocity. Value is amplitude
- or O-Peak of sine wave produced.
- 6. Motor inductance measured using 1Kz with the motor in the magnetic field.
- 7. Electrical Time Constant is time it takes for motor value to reach 63% of its final current after a step change in voltage.

8. Thermal Time Constant is time it takes for motor temperature to reach 63% of its final value after a step change in power.

- 9. Thermal Resistance is the number of degrees (Celsius) of temperature rise in the winding per watt of power dissipated. Determined experimentally.
- 10. Motor Constant is a measure of efficiency. Calculated by dividing the force constant by the square root of the motor resistance at maximum operating temperature.
- 11. Electrical Cycle Length is distance coil must travel to complete 360° electrical cycle.
- 12. Use TIPS sizing software for the most accurate estimate of coil temperature for a particular motion profile.
- 13. Motors available with nickel plating or black epoxy coating on magnets. Track part number modified with -N or -B at end. Must be specified at time of order.

310 Specifications

FORCE

- Ironless motor, patented, RE34674
- Cross-section: 3.40"H (86.4mm) x 1.35"W (34.3mm)
- Peak forces in two sizes to 263lbs (1170N), continuous forces to 58lbs (262N)
- Precision ground 3-piece track (310 model)
- Two lengths of modular magnet tracks allow unlimited length of travel
- Single-piece magnet tracks to 66" length
 Prealigned embedded digital HEDs, also available in separate cable from motor leads
- Internal air or liquid cooling available
- Internal thermal cutout switch protects coil

PERFORMANCE

MOTOR MODEL		310-1	310-2	310-3	310-4	310-5	310-6
Peak Force	Ν	218.9	409.3	600.0	790.0	980.0	1170.0
	lb	49.2	92.0	135.1	177.2	220.3	263.2
Continuous Force	N	49.0	91.6	133.9	176.2	219.3	262.0
	lb	11.0	20.6	30.1	39.6	49.3	58.9
Peak Power	W	1077	1885	2693	3500	4308	5116
Continuous Power	W	54	94	135	179	215	256

ELECTRICAL

MOTOR MODEL			310-1			310-2			310-3			310-4			310-5			310-6	
WIRING TYPE	UNITS	S	Р	т	S	Р	т	S	Р	т	S	Р	т	S	Р	т	S	Р	т
Peak Current	A ^{pk sine}	16.1	32.2	48.3	15.0	30.0	45.0	14.7	29.4	44.1	14.5	29.0	43.5	14.4	28.8	43.2	14.3	28.6	42.9
	(RMS)	11.4	22.8	34.2	10.6	21.2	31.8	10.4	20.8	31.2	10.3	20.5	30.8	10.2	20.4	30.5	10.1	20.2	30.3
Continuous Current	A ^{pk sine}	3.6	7.2	10.8	3.4	6.8	10.2	3.3	6.6	9.9	3.2	6.4	9.6	3.2	6.4	9.6	3.2	6.4	9.6
	(RMS)	2.5	5.1	7.6	2.4	4.8	7.2	2.5	4.7	7.0	2.3	4.5	6.8	2.3	4.5	6.8	2.3	4.5	6.8
Force Constant	N/A peak	13.7	6.8	4.6	27.3	13.6	9.1	40.9	20.5	13.6	54.7	27.4	18.2	68.1	34.0	22.7	81.8	40.9	27.3
	lb/A peak	3.1	1.5	1.0	6.1	3.1	2.0	9.2	4.6	3.1	12.3	6.2	4.1	15.3	7.7	5.1	18.4	9.2	6.1
Back EMF	V/m/s	15.7	7.8	5.2	31.5	15.7	10.5	47.2	23.6	15.7	63.0	31.5	21.0	78.7	39.4	26.2	94.5	47.2	31.5
	V/in/s	0.40	0.20	0.13	0.80	0.40	0.27	1.20	0.60	0.40	1.60	0.80	0.53	2.00	1.00	0.67	2.40	1.20	0.80
Resistance 25°C, phase to phase	ohms	4.3	1.1	0.5	8.6	2.2	1.0	12.9	3.2	1.4	17.2	4.3	1.9	21.5	5.4	2.4	25.8	6.5	2.9
Inductance, phase to phase	mH	3.0	0.8	0.3	6.0	1.5	0.7	9.0	2.3	1.0	12.0	3.0	1.3	15.0	3.8	1.7	18.0	4.5	2.0
Electrical Time Constant	ms	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7
Motor Constant	N/W	6.67	6.67	6.67	9.43	9.43	9.43	11.57	11.57	11.57	13.34	13.34	13.34	14.95	14.95	14.95	16.37	16.37	16.37
	lb/W	1.50	1.50	1.50	2.12	2.12	2.12	2.60	2.60	2.60	3.00	3.00	3.00	3.36	3.36	3.36	3.68	3.68	3.68
Max Terminal Voltage	VDC	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330

NOTE: S-Series P-Parallel T-Triple

THERMAL

MOTOR MODEL		310-1	310-2	310-3	310-4	310-5	310-6
Thermal Resistance Wind-Amb	degC / W	1.39	0.79	0.56	0.43	0.35	0.29
Thermal Time Constant	min	7.5	7.5	7.5	7.5	7.5	7.5
Maximum Winding Temperature	°C	100	100	100	100	100	100

MECHANICAL

MOTOR MODEL		310-1	310-2	310-3	310-4	310-5	310-6
Coil Weight	kg	0.31	0.55	0.80	1.03	1.27	1.53
	lb	0.69	1.22	1.75	2.27	2.80	3.36
Coil Length	mm	81.3	142.2	203.2	264.2	325.1	386.1
	in	3.2	5.6	8.0	10.4	12.8	15.2
Attractive Force	Ν	0	0	0	0	0	0
	lbf	0	0	0	0	0	0
Electrical Cycle	mm	60.96	60.96	60.96	60.96	60.96	60.96
Length	in	2.4	2.4	2.4	2.4	2.4	2.4

(A) ENGLISH TOP MOUNTING

COIL SIZE (inches)	L	N	А	В	C	
310-1A	3.20	5	0.50	1.60	2.70	
310-2A	5.60	5	0.50	2.80	5.10	
310-3A	8.00	5	0.50	4.00	7.50	
310-4A	10.40	5	0.50	5.20	9.90	
310-5A	12.80	5	0.50	6.40	12.30	
310-6A	15.20	5	1.70	7.60	13.50	

(M) METRIC TOP MOUNTING

COIL SIZE (mm)	L	N	А	В	C
310-1M	81.3	5	12.7	40.6	68.6
310-2M	141.2	5	12.7	71.1	129.5
310-3M	203.2	5	12.7	101.6	190.5
310-4M	264.2	5	12.7	132.1	251.5
310-5M	325.1	5	12.7	162.6	312.4
310-6M	386.1	5	43.2	193.0	342.9

(For Single Piece) 64.8in/1645.9mm Weight/Foot:

8.50lbs/ft

Incremental Length: 2.4in/60.96mm

Minimum Length: 2.4in/60.96mm

Maximum Length: 64.8in/1645.9mm

Weight/Foot: 8.50lbs/ft

Incremental Length: 1.2in/30.48mm

Minimum Length: 8.4in/213.4mm

Maximum Length: 66in/1676.4mm

Weight/Foot: 8.50lbs/ft

(B) ENGLISH SIDE MOUNTING

COIL SIZE (inches)	L	N	А	В	C
310-1B	3.20	3	0.50	1.60	2.70
310-2B	5.60	3	0.50	2.80	5.10
310-3B	8.00	3	0.50	4.00	7.50
310-4B	10.40	3	0.50	5.20	9.90
310-5B	12.80	3	0.50	6.40	12.30
310-6B	15.20	3	1.70	7.60	13.50

(N) METRIC SIDE MOUNTING

COIL SIZE (mm)	L	N	A	В	C	
310-1N	81.3	3	12.7	40.6	68.6	
310-2N	141.2	3	12.7	71.1	129.5	
310-3N	203.2	3	12.7	101.6	190.5	
310-4N	264.2	3	12.7	132.1	251.5	
310-5N	325.1	3	12.7	162.6	312.4	
310-6N	386.1	3	43.2	193.0	342.9	

N	MODULAR TRACK										
LENGTH In Inches	LENGTH In mm	QUANTITY 31007M 31507M	QUANTITY 31009M 31509M								
7.2	182.9	1	0								
9.6	243.8	0	1								
12.0	304.8	1	0								
14.4	365.8	2	0								
16.8	426.7	1	1								
19.2	487.7	0	2								
21.6	548.6	3	0								
24.0	609.6	2	1								
26.4	670.6	1	2								
28.8	731.5	0	3								
31.2	792.5	3	1								
33.6	853.4	2	2								
36.0	914.4	1	3								
38.4	975.4	0	4								
40.8	1036.3	3	2								
43.2	1097.3	2	3								
45.6	1158.3	1	4								
48.0	1219.2	0	5								
50.4	1280.2	3	3								
52.8	1341.1	2	4								
55.2	1402.1	1	5								
57.6	1463.0	0	6								
60.0	1524.0	3	4								
62.4	1585.0	2	5								
64.8	1645.9	1	6								
67.2	1706.9	0	7								
69.6	1767.8	3	5								
72.0	1828.8	2	6								

310xxS																
P/N	310xx	S	L (in)	L (mm)	A	A (mm)	N		P/N	310xx	S	L (in)	L (mm)	Α	A (mm)	N
	31008	S	8.4	205.8	0.20	5.08	3			31038	S	38.4	940.8	3.20	81.28	9
	31009	S	9.6	235.2	0.80	20.32	3	_		31039	S	39.6	970.2	3.80	96.52	9
	31010	S	10.8	264.6	1.40	1.40	3			31040	S	40.8	999.6	0.40	10.16	11
	31012	S	12.0	294.0	2.00	50.80	3			31042	S	42.0	1029.0	1.00	25.40	11
	31013	S	13.2	323.4	2.60	66.04	3			31043	S	43.2	1058.4	1.60	40.64	11
	31014	S	14.4	352.8	3.20	81.28	3			31044	S	44.4	1087.8	2.20	55.88	11
	31015	S	15.6	382.2	3.80	96.52	3			31045	S	45.6	1117.2	2.80	71.12	11
	31016	S	16.8	411.6	0.40	10.16	5	_		31046	S	46.8	1146.6	3.40	86.36	11
	31018	S	18.0	441.0	1.00	25.40	5			31048	S	48.0	1176.0	4.00	101.60	11
	31019	S	19.2	470.4	1.60	40.64	5			31049	S	49.2	1205.4	0.60	15.24	13
	31020	S	20.4	499.8	2.20	55.88	5			31050	S	50.4	1234.8	1.20	30.48	-13
	31021	S	21.6	529.2	2.80	71.12	5			31051	S	51.6	1264.2	1.80	45.72	13
	31022	S	22.8	558.6	3.40	86.36	5			31052	S	52.8	1293.6	2.40	60.96	-13
	31024	S	24.0	588.0	4.00	101.60	5			31054	S	54.0	1323.0	3.00	76.20	13
	31025	S	25.2	617.4	0.60	15.24	7			31055	S	55.2	1352.4	3.60	91.44	13
	31026	S	26.4	646.8	1.20	30.48	7			31056	S	56.4	1381.8	0.20	5.08	15
	31027	S	27.6	676.2	1.80	45.72	7			31057	S	57.6	1411.2	0.80	20.32	15
	31028	S	28.8	705.6	2.40	60.96	7			31058	S	58.8	1440.6	1.40	35.56	15
	31030	S	30.0	735.0	3.00	76.20	7			31060	S	60.0	1470.0	2.00	50.80	15
	31031		31.2	764.4	3.60	91.44	7			31061		61.2	1499.4	2.60	66.04	15
	31032	S	32.4	793.8	0.20	5.08	9			31062	S	62.4	1528.8	3.20	81.28	15
	31033	S	33.6	823.2	0.80	20.32	9			31063	S	63.6	1558.2	3.80	96.52	15
	31034	S	34.8	852.6	1.40	35.56	9			31064	S	64.8	1587.6	0.40	10.16	17
	31036 31037		36.0 37.2	882.0 911.4	2.00 2.60	50.80 66.04	9 9			31066	S	66.0	1617.0	1.00	25.40	17

*Please note that 72.0 inches is NOT the maximum length for modular tracks.

			310	Dxx	M1					
P/N 310xx M1	L (in)	L (mm)	N		P/N	310xx N	/11	L (in)	L (mm)	N
31002 M1	2.4	60.96	1			31028 M	/11	28.8	731.52	12
31004 M1	4.8	121.92	2			31031 N	/11	31.2	792.48	13
31007 M1	7.2	182.88	3			31033 N	/11	33.6	853.44	14
31009 M1	9.6	243.84	4			31036 N	/11	36.0	914.40	15
31012 M1	12.0	304.80	5			31038 N	/11	38.1	975.36	16
31014 M1	14.4	365.76	6			31040 N	/11	40.8	1036.32	17
31016 M1	16.8	426.72	7			31043 N	/11	43.2	1097.28	18
31019 M1	19.2	487.68	8			31045 N	/11	45.6	1158.20	19
31021 M1	21.6	548.64	9			31048 N	/11	48.0	1219.20	20
31024 M1	24.0	609.60	10			31050 N	/11	50.4	1280.16	21
31026 M1	26.4	670.56	11			31052 N	/11	52.8	1341.12	22
						31055 N	//1	55.2	1402.08	23
						31057 N	/11	57.6	1463.04	24

P/N 31002 M

60.0

1524.00

25

27

26

31060 M1

	SI	VGLE	PIECE	310xxM	_
P/N	310xx	М	L (in)	L (mm)	N
	31002	М	2.4	60.96	1
	31004	М	4.8	121.92	2
	31007	М	7.2	182.88	3
	31009	М	9.6	243.84	4
	31012	М	12.0	304.80	5
	31014	М	14.4	365.76	6
	31016	М	16.8	426.72	7
	31019	М	19.2	487.68	8
	31021	М	21.6	548.64	9
	31024	М	24.0	609.60	10
	31026	М	26.4	670.56	11
	31028	М	28.8	731.52	12
	31031	М	31.2	792.48	13
	31033	М	33.6	853.44	14
	31036	М	36.0	914.40	15
	31038	М	38.4	975.36	16
	31040	М	40.8	1036.32	17
	31043	М	43.2	1097.28	18
	31045	М	45.6	1158.24	19
	31048	М	48.0	1219.20	20
	31050	М	50.4	1280.16	21
	31052	М	52.8	1341.12	22
	31055	Μ	55.2	1402.08	23
	31057	М	57.6	1463.04	24
	31060	Μ	60.0	1524.00	25
	31062	М	62.4	1584.96	26
	31064	М	64.8	1645.92	27

310 Wiring

- 1. Peak force and current based on 5% duty cycle and one second duration
- 2. Continuous force and current based on coil winding temperature maintained at 100°C.
- Force constant is peak of resistive force produced by 1.0 amp thru one motor lead and 0.5 amps thru other two leads. Also, Back EMF (V/in/sec) * 7.665 = Force constant (lb/amp).
- Motor resistance measured between any two motor leads with motor connected in Delta winding at 25°C. For temperature at 100°C, multiply resistance by 1.295 (75°C rise * 0.393%/°C)
- 5. Back EMF measured between any two motor leads while moving at constant velocity. Value is amplitude or 0-Peak of sine wave produced.
- 6. Motor inductance measured using 1Kz with the motor in the magnetic field.
- Electrical Time Constant is time it takes for motor value to reach 63% of its final current after a step change in voltage.
- Thermal Time Constant is time it takes for motor temperature to reach 63% of its final value after a step change in power.
- 9. Thermal Resistance is the number of degrees (Celsius) of temperature rise in the winding per watt of power dissipated. Determined experimentally.
- 10. Motor Constant is a measure of efficiency. Calculated by dividing the force constant by the square root of the motor resistance at maximum operating temperature.
- 11. Electrical Cycle Length is distance coil must travel to complete 360° electrical cycle.
- 12. Use TIPS sizing software for the most accurate estimate of coil temperature for a particular motion profile.
- 13. Motors available with nickel plating or black epoxy coating on magnets. Track part number modified with -N or -B at end. Must be specified at time of order.

410 Specifications

FORCE

- Ironless motor, patented, RE34674
- Cross-section: 4.50"H (114.3mm) x 2.00"W (50.8mm)
- · Peak forces in two sizes to 883lbs (3928N), continuous forces to 197 lbs (878N)
- Precision ground 3-piece track (410 model)
- Two lengths of modular magnet tracks allow unlimited length of travel
 Single-piece magnet tracks to 72.24" length
 Prealigned embedded digital HEDs, also available in separate cable from motor leads
- Internal air cooling manifold or liquid cooling manifold
- Internal thermal cutout switch protects coil

PERFORMANCE

MOTOR MODEL		410-2	410-3	410-4	410-6	410-8
Peak Force	Ν	1041.4	1523.6	2006.3	2967.2	3928.1
	lb	234.1	342.5	451.0	667.0	883.0
Continuous Force	N	233.1	340.8	448.9	663.7	878.6
	lb	52.4	76.6	100.9	149.2	197.5
Peak Power	W	2835	4050	5265	7695	10125
Continuous Power	W	142	203	263	385	506

ELECTRICAL

MOTOR MODEL			410-2			410-3			410-4			410-6			410-8	
WIRING TYPE	UNITS	S	Р	т	S	Р	т	S	Р	т	S	Р	т	S	Р	т
Peak Current	A pk sine	19.1	38.2	57.3	18.6	37.2	55.8	18.4	36.8	55.2	18.1	36.2	54.3	18.0	36.0	54.0
	(RMS)	13.5	27.0	40.5	13.2	23.6	39.5	13.0	26.0	39.0	12.8	25.6	38.4	12.7	25.5	38.2
Continuous Current	A pk sine	4.3	8.6	12.9	4.2	8.4	12.6	4.1	8.2	12.3	4.1	8.2	12.3	4.0	8.0	12.0
	(RMS)	3.0	6.1	9.1	3.0	5.9	8.9	2.9	5.8	8.7	2.9	5.8	5.7	2.8	5.7	8.5
Force Constant	N/A peak	54.5	27.3	18.2	81.8	40.9	27.3	109.0	54.5	36.3	163.7	81.8	54.6	218.4	109.2	72.8
	lb/A peak	12.3	6.1	4.1	18.4	9.2	6.1	24.5	12.3	8.2	36.8	18.4	12.3	49.1	24.6	16.4
Back EMF	V/m/s	63.0	31.5	21.0	94.5	47.2	31.5	126.0	63.0	42.0	189.0	94.5	63.0	252.0	126.0	84.0
V/in/s		1.60	0.80	0.53	2.40	1.20	0.80	3.20	1.60	1.07	4.80	2.40	1.60	6.40	3.20	2.13
Resistance 25°C, phase to phase	ohms	8.0	2.0	0.9	12.0	3.0	1.3	16.0	4.0	1.8	24.0	6.0	2.7	32.0	8.0	3.6
Inductance, phase to phase	mH	10.0	2.5	1.1	15.0	3.8	1.7	20.0	5.0	2.2	30.0	7.5	3.3	40.0	10.0	4.4
Electrical Time Constant	ms	1.3	1.3	1.3	1.3	1.3	1.3	1.3	1.3	1.3	1.3	1.3	1.3	1.3	1.3	1.3
Motor Constant	N/W	19.57	19.57	19.57	23.98	23.98	23.98	27.67	27.67	27.67	33.90	33.90	33.90	39.14	39.14	39.14
	lb/W	4.40	4.40	4.40	5.39	5.39	5.39	6.22	6.22	6.22	7.62	7.62	7.62	8.80	8.80	8.80
Max Terminal Voltage	VDC	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330

NOTE: S-Series P-Parallel T-Triple

THERMAL

MOTOR MODEL		410-2	410-3	410-4	410-6	410-8
Thermal Resistance Wind-Amb	degC / W	0.53	0.37	0.26	0.19	0.15
Thermal Time Constant	min	15.1	15.1	15.1	15.1	15.1
Maximum Winding	°C	100	100	100	100	100

MECHANICAL

MOTOR MODEL		410-2	410-3	410-4	410-6	410-8
Coil Weight	kg	1.59	2.27	2.95	4.32	5.68
	Ib	3.5	5.0	6.5	9.5	12.5
Coil Length	mm	199.1	284.5	369.8	540.5	711.2
	in	7.84	11.20	14.56	21.28	28.00
Attractive Force	N	0	0	0	0	0
	Ibf	0	0	0	0	0
Electrical Cycle	mm	85.34	85.34	85.34	85.34	85.34
Length	in	3.36	3.36	3.36	3.36	3.36

410 Dimensions

Clearance for 1/4-20 or M6 Socket Head Screw

`⊕`¦r`⊙`¦r⊕`

- 3.360 · (84.344 Typical

Minimum Length: 6.72in/170.7mm

Maximum Length: 70.56in/1792.22mm

Weight/Foot: 20.0lbs/ft

Incremental Length: 3.36in/85.34mm

Minimum Length: 6.72in/170.7mm

Maximum Length: 70.56in/1792.22mm

Weight/Foot: 20.0lbs/ft

Incremental Length: 1.68in/42.67mm

Minimum Length: 16.80in/426.72mm

Maximum Length: 72.24in/1834.9mm

Weight/Foot: 20.0lbs/ft

(A) ENGLISH TOP MOUNTING

F 0.775 (19.69)

0.050

(1.27)

0.775

0.050 Clearance

0.775

- 0.050

(1.27

(1.27)

Assembly Holes

6

1.680 (42.672)

2.520

3.635 (92.33) (6.985) 0.275

0.840

3.635 (92.33)

(6.985) 0.275

1/4-20 x 0.375

3.635

3.000 (76.2)

1.000 (25.4)

0.275

Ō

6

⊕⁄ ⊕

- 1.680 -(42.672)

(49.53)

2.000

- 1.950 -(49.53)

2.000 (50.8)

(49.53)

2.000 (50.8)

4.500 (114.3)

> 4.500 (114.3)

4.500 (114.3)

MODULAR 41006M 41010M

SINGLE PIECE 410xxM1

SINGLE PIECE 410xxS

COIL SIZE (in) L	N	Α	В	C	D	E	F	G
410-2A	7.84	5	0.50	3.92	7.34				
410-3A	11.20	8	0.50	1.60	5.60	9.60	10.70		
410-4A	14.56	9	0.50	3.28	7.28	11.28	14.06		
410-6A	21.28	13	0.50	2.64	6.64	10.64	14.64	18.64	20.78
410-8A	28.00	13	2.00	6.00	10.00	14.00	18.00	22.00	26.00

(M) METRIC TOP MOUNTING

COIL SIZE (mm) L	N	Α	В	C	D	Е	F	G
410-2M	199.1	5	12.7	99.6	186.4				
410-3M	284.5	8	12.7	40.6	142.2	243.8	271.8		
410-4M	369.8	9	12.7	83.3	184.9	286.5	357.1		
410-6M	540.5	13	12.7	67.1	168.7	270.3	371.9	473.4	527.8
410-8M	711.2	13	50.8	152.4	254.0	355.6	457.2	558.8	660.4

B) ENGLISH SIDE MOUNTING

0

ф

¢

Ð

COIL SIZE (in)	L	N	Α	В	C	D	Е	F	G	H	I
410-2B	7.84	3	2.90	4.90	6.90						
410-3B	11.20	3	4.10	7.10	10.10						
410-4B	14.56	4	2.78	5.78	8.78	11.78					
410-6B	21.28	6	3.14	6.14	9.14	12.14	15.14	18.14			
410-8B	28.00	9	3.50	6.50	9.50	12.50	15.50	18.50	21.50	24.50	27.50

(N) METRIC SIDE MOUNTING

COIL SIZE (mm)	L	N	Α	B	C	D	Е	F	G	H	I
410-2N	199.1	3	73.7	124.5	175.3						
410-3N	284.5	3	104.1	180.3	256.5						
410-4N	369.8	4	70.6	146.8	223.0	299.2					
410-6N	540.5	6	79.7	156.0	232.2	308.4	384.6	460.8			
410-8N	711.2	9	88.9	165.1	241.3	317.5	393.7	469.9	546.1	622.3	698.5

"N" Number of Holes Clearance for 1/4-20 Socket Head Screws

Ō

— 3.360 (84.344) Typical

•

- 6.720 -(170.688)

"N" Number of Holes Clearance for 1/4-20 Socket Head Screws

> _ 3.360 _ (85.344) Typical

"N" Number of Holes Clearance for 1/4-20 Socket Head Screws

⊕ ⊕ ∉

-4.000 (101.6)Typical *

<u>_₩₩₩₽₩</u>

0

C

(1)

⊕ €

۲

ō

3.360 -(84.344) Typical 0.010 Clearance (0.254)

M6-1.0 x 0.550

•

Ō

- 10.080 --(256.032)

Õ

Assembly Holes

 \oplus

Ф

 \oplus \oplus

bly Holes

0

0 0

LENGTH Inches	MODULAR LENGTH In mm	TRACE QUANTITY 41006M	QUANTITY 41010M
6.72	170.69	1	0
10.08	256.03	0	1
13.44	341.38	0	0
16.80	426.72	1	1
20.16	512.06	0	2
23.52	597.41	2	1
26.88	682.75	1	2
30.24	768.10	0	3
33.60	853.44	2	2
36.96	938.78	1	3
40.32	1024.13	0	4
43.68	1109.47	2	3
47.04	1194.82	1	4
50.40	1280.16	0	5
53.76	1365.50	2	4
57.12	1450.85	1	5
60.48	1536.19	0	6
63.84	1621.54	2	5
67.20	1706.88	1	6
70.56	1792.22	0	7
73.92	1877.57	2	6
77.28	1962.91	1	7
80.64	2048.26	0	8
84.00	2133.60	2	7
87.36	2218.94	1	8
90.72	2304.29	0	9
94.08	2389.63	2	8
97.44	2474.98	1	9

			410 x	k M1	
P/N	410xx	M1	L (in)	L (mm)	N
	41006	M1	6.72	170.69	2
	41010	M1	10.08	256.03	3
	41013	M1	13.44	341.38	4
	41016	M1	16.80	426.72	5
	41020	M1	20.16	512.06	6
	41023	M1	23.52	597.41	7
	41026	M1	26.88	682.75	8
	41030	M1	30.24	768.10	9
	41033	M1	33.60	853.44	10
	41036	M1	36.96	938.78	11
	41040	M1	40.32	1024.13	12
	41043	M1	43.68	1109.47	13
	41047	M1	47.04	1194.82	14
	41050	M1	50.40	1280.16	15
	41053	M1	53.76	1365.50	16
	41057	M1	57.12	1450.85	17
	41060	M1	60.48	1536.19	18
	41063	M1	63.84	1621.54	19
	41067	M1	67.20	1706.88	20
	41070	M1	70.56	1792.22	21

M6-1.0 x 0	.550
Clearance Socket He	
3.635 <u><u><u></u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>	

P/N 41003 M

		SIN	GLE PIE	CE 410xxN	1
P/N	410xx	М	L (in)	L (mm)	N
	41003	М	3.36	85.34	1
	41006	М	6.72	170.69	2
	41010	М	10.08	256.03	3
	41013	М	13.44	341.38	4
	41016	М	16.80	426.72	5
	41020	М	20.16	512.06	6
	41023	М	23.52	597.41	7
	41026	М	26.88	682.75	8
	41030	М	30.24	768.10	9
	41033	М	33.60	853.44	10
	41036	М	36.96	938.78	11
	41040	М	40.32	1024.13	12
	41043	М	43.68	1109.47	13
	41047	М	47.04	1194.82	14
	41050	М	50.40	1280.16	15
	41053	М	53.76	1365.50	16
	41057	М	57.12	1450.85	17
	41060	М	60.48	1536.19	18
	41063	М	63.84	1621.54	19
	41067	М	67.20	1706.88	20
	41070	М	70.56	1792.22	21

410 Wiring

- 1. Peak force and current based on 5% duty cycle and one second duration.
- 2. Continuous force and current based on coil winding temperature maintained at 100°C.
- Force constant is peak of resistive force produced by 1.0 amp thru one motor lead and 0.5 amps thru other two leads. Also, Back EMF (V/in/sec) * 7.665 = Force constant (ib/amp).
- Motor resistance measured between any two motor leads with motor connected in Delta winding at 25°C. For temperature at 100°C, multiply resistance by 1.295 (75°C rise * 0.393%/°C)
- 5. Back EMF measured between any two motor leads while moving at constant velocity. Value is amplitude or 0-Peak of sine wave produced.
- 6. Motor inductance measured using 1Kz with the motor in the magnetic field.
- 7. Electrical Time Constant is time it takes for motor value to reach 63% of its final current after a step change in voltage.
- Thermal Time Constant is time it takes for motor temperature to reach 63% of its final value after a step change in power.
- 9. Thermal Resistance is the number of degrees (Celsius) of temperature rise in the winding per watt of power dissipated. Determined experimentally.
- 10. Motor Constant is a measure of efficiency. Calculated by dividing the force constant by the square root of the motor resistance at maximum operating temperature.
- 11. Electrical Cycle Length is distance coil must travel to complete 360° electrical cycle.
- Use TIPS sizing software for the most accurate estimate of coil temperature for a particular motion profile.
 Motors available with nickel plating or black epoxy coating on magnets. Track part number modified with -N or -B at end. Must be specified at time of order.

How to order - 110

Magnet Track:

Additional information available on: www.parker-eme.com/trilogy_motor

I-FORCE Ironless Linear Positioners

Parker Trilogy's I-Force linear positioners utilize our high-performance I-Force ironless linear motors in a pre-engineered, easily integrated, ready-to-run pack-age. The principal design goal for these positioners is to achieve high performance at an economical cost while preserving the design flexibility to accommodate customization.

Trilogy's positioners have selectable single- or dual-bearing to match the performance and cost requirements for each application. In addition, they are designed to connect together using transition plates for XY or multi-axis configurations. Options include a variety of cable management systems in addition to bellows and hard covers.

Flexibility, multi-axis compatibility, and ease of customization make the I-Force linear positioners a superior choice for high performance and value.

- Trilogy positioners use ground steel or aluminum bases for flatness and parallelism because aluminum extrusions often do not meet the accuracy requirements for straightness and flatness.
- Trilogy has single- or dual-bearing rail positioners to better match the performance and cost requirements for each application.
- Every positioner includes a magnetic encoder for industrial environments or an optical encoder with resolutions down to 0.1um (0.000 04").
- Dual-rail positioners have bellows as a standard option.
- Multiple carriage options are available on all positioner series.
- · Different cable track widths available for added stiffness and rigidity
- Different cable track widths available as custom options for user payload tubes and cables

I-Force Ironless Motor Positioner

PERFORMANCE		LINEAR MAGN 5.0µm	NETIC ENCODER 1.0µm	RENISHAW ENCODE 0.5µm	er options (Note 5) 0.1µm	
Peak Velocity	in/s [m/s]	275 [7]	100 [2.5]	120 [3]	15 [0.4]	
Resolution	in [µm]	0.0002 [5]	0.000 04 [1.0]	0.000 02 [0.5]	0.000 004 [0.1]	
Repeatability	in [µm]	±0.0004 [±10]	±0.000 8 [2.0]	±0.000 06 [1.5]	±0.000 04 [1.0]	
Accuracy – LME		±(30µm +50µm/m)	±(25µm +50µm/m)			

±(5µm +30µm/m)

Accuracy – Renishaw

Note: For travels less than 1 meter, accuracy should be calculated at 1 meter

MOTOR MODEL		110-1	110-2
Peak Force	Ν	108.5	202.5
	lb	24.4	45.5
Continuous Force	Ν	24.5	45.4
	lb	5.5	10.2
Peak Power	W	938	1641
Continuous Power	W	47	82

ACCURACY	STANDARD	LASER ALIGNMENT OPTION
Straightness restrained on flat surface in $\left[\mu m\right]$	±0.000127 in/in [±127µm/m]	±.0000127 in/in
Flatness restrained on flat surface in [µm]	±0.013 [±330]	
Note: Straightness/Elatness specifications based on system mounte	d to surface of flatness +0.0005in/ft	

LOAD		- 1	- 2
Vertical (Fv) see note 11	lbs [kg]	30 [13, 5]	30 [13, 5]
Side (Fs) see note 11	lbs [kg]	15 [6, 8]	15 [6, 8]
Moments-Roll (Mr) see note 11	lb-ft [N-m]	15 [20]	15 [20]
Moments-Pitch (Mp) see note 11	lb-ft [N-m]	52 [70]	52 [70]
Moments-Yaw (My) see note 11	lb-ft [N-m]	52 [70]	52 [70]

T1D Dimensions

Coil

110-1

110-1

110-2

110-2

I-Force Ironless Motor Positioner

PERFORMANCE			LINEAR MAGNETIC ENCODER		RENISHAW ENCODER OPTIONS (Note 5)	
		5.0 μm	1.0 μm	0. 5μ m	0.1µm	
Peak Velocity	in/s [m/s]	275 [7]	100 [2.5]	120 [3]	15 [0.4]	
Resolution	in [µm]	0.0002 [5]	0.000 04 [1.0]	0.000 02 [0.5]	0.000 004 [0.1]	
Repeatability	in [µm]	±0.0004 [±10]	±0.000 8 [2.0]	±0.000 06 [1.5]	±0.000 04 [1.0]	
Accuracy – LME		±(30μm +50μm/m)	±(25μm +50μm/m)			
Accuracy Donichow				(Eum	20, 1 m/m)	

Accuracy – Renishaw

Note: For travels less than 1 meter, accuracy should be calculated at 1 meter

±(5μm +30μm/m)

MOTOR MODEL		110-1	110-2
Peak Force	Ν	108.5	202.5
	lb	24.4	45.5
Continuous Force	Ν	24.5	45.4
	lb	5.5	10.2
Peak Power	W	938	1641
Continuous Power	W	47	82

ACCURACY	STANDARD	LASER ALIGNMENT OPTION
Straightness restrained on flat surface in [µm]	±0.000127 in/in [±127µm/m]	±.000013 in/in [±13 μm/m]
Flatness restrained on flat surface in $\left[\mu m\right]$	±0.013 [±330]	

Note: Straightness/Flatness specifications based on system mounted to surface of flatness ± 0.0005 in/ft

PHYSICAL		- 2	- 3	
Carriage Assembly	lbs [kg]	1.10 [0,50]	1.50 [0,68]	
Base Assembly				
T1SD Aluminum (0.250'' thick))	lbs/ft [kg/m]	2.25 [3,35]	•••••	
T1SA Aluminum (0.375" thick))	lbs/ft [kg/m]	2.78. [4,13]	····· >	
Carriage Length	in [mm]	3.40 [86,4]	5.80 [147,3]	
Coil Bar Length	in [mm]	3.20 [81,3]	5.60 [142,2]	

LOAD		- 1	- 2
Vertical (Fv) see note 11	lbs [kg]	25 [11, 3]	25 [11, 3]
Side (Fs) see note 11	lbs [kg]	13 [5, 7]	13 [5, 7]
Moments-Roll (Mr) see note 11	lb-ft [N-m]	11 [15]	11 [15]
Moments–Pitch (Mp) see note 11	lb-ft [N-m]	44 [60]	44 [60]
Moments-Yaw (My) see note 11	lb-ft [N-m]	44 [60]	44 [60]

- 1 Total travel (in) = BASE LENGTH 1.6 (40.64 mm) CARRIAGE LENGTH.
- 2 Maximum base length is 40.8⁻, 1m
- 3 Aluminum base is black anodized.
- 4 For complete motor specifications, refer to 110 series motor data sheet.
- 5 Renishaw encoder, RGH24 series, available in 0.05 µm, 0.1 µm, 0.5 µm, 1.0µm, 5.0µm.
- 7 Standard cable track provided is Igus 07.20.018.
- 8 Specification subject to change without notice.
- 9 Listed specifications based on motor size and typical performance requirements. Bearing manufacturer specifications exceed listed specifications.

T1S Dimensions

	CARRIAGE TABLE	
COIL SIZE	-1	-2
CARRIAGE LENGTH	3.4 [86.4]	5.8 [147.3]
A (1ST MOUNTING HOLE)	0.224 [5.7]	0.440 [11.2]
B (DOWEL PIN HOLE)	0.224 [5.7]	0.440 [11.2]

I-Force Ironless Motor Positioner

T2D Specifications

PERFORMANCE		LINEAR MAGNI	ETIC ENCODER	RENISHAW ENCODE	ER OPTIONS (Note 5)	
FLRIORIVIANCE		<u>5.0</u> μm	<u>1.0μm</u>	<u>0.5μm</u>	0.1µm	
Peak Velocity	in/s [m/s]	275 [7]	100 [2.5]	120 [3]	15 [0.4]	
Resolution	in [µm]	0.0002 [5]	0.000 04 [1.0]	0.000 02 [0.5]	0.000 004 [0.1]	
Repeatability	in [µm]	±0.0004 [±10]	±0.000 8 [2.0]	±0.000 06 [1.5]	±0.000 04 [1.0]	
Accuracy – LME		±(30μm +50μm/m)	±(25μm +50μm/m)			

Accuracy - Renishaw

Note: For travels less than 1 meter, accuracy should be calculated at 1 meter

±(5µm +30µm/m)

MOTOR MODEL		210-2	210-3	210-4
Peak Force	Ν	255.8	375.0	494.2
	lb	57.5	84.3	111.1
Continuous Force	Ν	57.4	84.1	110.3
	lb	12.9	18.9	24.8
Peak Power	W	1583	2261	2940
Continuous Power	W	79	113	147

ACCURACY	STANDARD	LASER ALIGNMENT OPTION
Straightness restrained on flat surface in $[\mu m]$	± 0.000127 in/in [$\pm 127\mu$ m/m]	±.0.0000127 in/in [±13µm/m]
Flatness restrained on flat surface in [µm]	±0.003 + 000254 in/in [±76 + 254µm/m]	

Note: For travels less than 1 meter, Flatness should be calculated at 1 meter

Straightness/Flatness specifications based on system mounted to surface of flatness ±0.0005in/ft

PHYSICAL		- 2	- 3	- 4
Carriage Assembly	lbs [kg]	3.10 [1,4]	4.10 [2,1]	5.50 [2,5]
Base Assembly				
T2DA Aluminum (0.375" thick)	lbs/ft [kg/m]	10.80 [16,1]		
T2DB Aluminum (0.500" thick)	lbs/ft [kg/m]	11.70 [17,4]		
T2DS Steel (0.500" thick)	lbs/ft [kg/m]	18.10 [26,9]	·····	•••••
Carriage Length	in [mm]	4.20 [106,7]	6.60 [167,6]	9.00 [228,6]
Coil Bar Length	in [mm]	7.20 [182,9]	9.60 [243,8]	12.00 [304,8]
			•••••••••••••••••••••••••••••••••••••••	

LOAD		- 2	- 3	- 4
Vertical (Fv) see note 11	lbs [kg]	60 [27,1]	80 [36,3]	100 [45,3]
Side (Fs) see note 11	lbs [kg]	40 [18,1]	60 [27,2]	60 [27,2]
Moments-Roll (Mr) see note 11	lb-ft [N-m]	40 [53]	60 [80]	60 [80]
Moments–Pitch (Mp) see note 11	lb-ft [N-m]	100 [134]	200 [270]	200 [270]
Moments–Yaw (My) see note 11	lb-ft [N-m]	100 [134]	200 [270]	200 [270]

- 1 Total travel = OAL 3.00° (76.2 mm) carriage length.
- 2 Maximum base length is 120^r (3048 mm).
- 3 Aluminum base is black anodized. Steel base is nickel plated.
- 4 For complete motor specifications, refer to 210 series motor data sheet.
- 5 Renishaw encoder, RGH24 series, available in 0.05 $\mu m,$ 0.1 $\mu m,$ 0.5 $\mu m,$ 1.0 $\mu m,$ 5.0 $\mu m.$
- 6 Cables extend past base by approximately 0.6⁻ when carriage is at negative hard stop.
- 7 Cable Track extends 0.175⁻ higher than carriage mounting surface. It is recommended to use optional Spacer Plate for custom mounting holes.
- 8 Standard cable track provided is Igus 07.30.018.
- 9 Base mounting holes are equidistant, 1.200" (12.0, 16.8, 21.6....) or 2.400" (9.6, 14.4, 19.2, 24.0....) from each end depending on base length.
- 10 Specification subject to change without notice.
- 11 Listed specifications based on motor size and typical performance requirements. Bearing manufacturer specifications exceed listed specifications.

T2D Dimensions

TOTAL TRAVEL = OAL - 3.00" (76.2 mm) - CARRIAGE LENGTH $OAL = MULTIPLE \ OF \ 2.400" \ (60.96)$

	CARRIAGE SIZE								
	- 2	mm	- 3	mm	- 4	mm			
CL	4.200	106.68	6.600	167.64	9.000	228.6			
А	3.200	81.28	5.600	142.24	8.000	203.80			
В	_	_	2.800	71.12	4.000	101.60			
COIL 210-2			2	10-3	210)-4			

I-Force Ironless Motor Positioner

T2S Specifications

PERFORMANCE		LINEAR MAGNE		RENISHAW ENCODER OPTIONS (Note 5)		
I EIGI ORMIANOE		5.0μ m	1.0µm	0.5µm	0.1µm	
Peak Velocity	in/s [m/s]	275 [7]	100 [2.5]	120 [3]	15 [0.4]	
Resolution	in [µm]	0.0002 [5]	0.000 04 [1.0]	0.000 02 [0.5]	0.000 004 [0.1]	
Repeatability	in [µm]	± 0.0004 [± 10]	±0.000 8 [2.0]	±0.000 06 [1.5]	±0.000 04 [1.0]	
Accuracy – LME		±(30µm +50µm/m)	±(25µm +50µm/m)			

Accuracy – Renishaw

Note: For travels less than 1 meter, accuracy should be calculated at 1 meter

±(5µm +30µm/m)

MOTOR MODEL		210-2	210-3	210-4
Peak Force	Ν	255.8	375.0	494.2
	lb	57.5	84.3	111.1
Continuous Force	Ν	57.4	84.1	110.3
	lb	12.9	18.9	24.8
Peak Power	W	1583	2261	2940
Continuous Power	W	79	113	147

ACCURACY	STANDARD	LASER ALIGNMENT OPTION		
Straightness restrained on flat surface in [µm]	±0.000127 in/m [±127mm/m]	±0.0000127 in/in [±13mm/m]		
Flatness restrained on flat surface in [um]	±0.003 +.000254 in/in [±76 + 254µm/m]			

Note: For travels less than 1 meter, Flatness should be calculated at 1 meter

Straightness/Flatness specifications based on system mounted to surface of flatness ±0.0005in/ft

PHYSICAL		- 2	- 3	- 4
Carriage Assembly	lbs [kg]	2.10 [0,95]	3.10 [1,38]	3.80 [1,70]
Base Assembly			•••••	►
T2SA Aluminum (0.375" thick)	lbs/ft [kg/m]	9.10 [13,5]	·····	••••••
T2SB Aluminum (0.500" thick)	lbs/ft [kg/m]	9.90 [14,7]		
T2SS Steel (0.500" thick)	lbs/ft [kg/m]	15.10 [22,5]	•••••	▶
Carriage Length	in [mm]	4.20 [106,7]	6.60 [167,6]	9.00 [228,6]
Coil Bar Length	in [mm]	7.20 [182,9]	9.60 [243,8]	12.00 [304,8]

LOAD		- 2	- 3	- 4
Vertical (Fv) see note 11	lbs [kg]	40 [18,1]	50 [22,7]	60 [27,2]
Side (Fs) see note 11	lbs [kg]	20 [9,1]	30 [13,6]	30 [13,6]
Moments-Roll (Mr) see note 11	lb-ft [N-m]	20 [27]	30 [40]	30 [40]
Moments–Pitch (Mp) see note 11	lb-ft [N-m]	50 [67]	100 [135]	100 [135]
Moments-Yaw (My) see note 11	lb-ft [N-m]	50 [67]	100 [135]	100 [135]

- 1 Total travel = OAL 3.00" (76.2 mm) carriage length.
- 2 Maximum base length is 120" (3048 mm).
- 3 Aluminum base is black anodized. Steel base is nickel plated.
- 4 For complete motor specifications, refer to 210 series motor data sheet.
- 5 Renishaw encoder, RGH24 series, available in $0.05 \mu m, \ 0.1 \mu m, \ 0.5 \mu m, \ 1.0 \mu m, \ 5.0 \mu m.$
- 6 Cable extends past base by approximately 0.6" when carriage is at negative hard stop.
- 7 Cable Track extends 0.175⁻ higher than carriage mounting surface. It is recommended to use optional Spacer Plate for custom mounting holes.
- 8 Standard cable track provided is Igus 07.30.018.
- 9 Base mounting holes are equidistant, 1.200" (12.0, 16.8, 21.6....) or 2.400" (9.6, 14.4, 19.2, 24.0....) from each end depending on base length.
- 10 Specification subject to change without notice.
- 11 Listed specifications based on motor size and typical performance requirements. Bearing manufacturer specifications exceed listed specifications. ments. Bearing manufacturer specifications exceed listed specifications.

T2S Dimensions

TOTAL TRAVEL = OAL - 3.00" - CARRIAGE LENGTH = OAL - 76.2 mm - CARRIAGE LENGTH

OAL = MULTIPLE OF 2.400" (60	.96)
------------------------------	------

CARRIAGE SIZE								
	- 2	mm	- 3	mm	- 4	mm		
CL	4.200	106.68	6.600	167.64	9.000	228.60		
А	3.200	81.28	5.600	142.24	8.000	203.20		
В	—	71.12	2.800	101.60	4.000	101.64		
COIL	210	210-2		210-3		210-4		

I-Force Ironless Motor Positioner

T3D Specifications

PERFORMANCE		LINEAR MAGI 5.0µm	NETIC ENCODER 1.0.1µm	RENISHAW ENCOD 0.5µm	DER OPTIONS (Note 5) 0.1µm		
Peak Velocity	in/s [m/s]	275 [7]	100 [2.5]	120 [3]	15 [0.4]		
Resolution	in [µm]	0.0002 [5]	0.000 04 [1.0]	0.000 02 [0.5]	0.000 004 [0.1]		
Repeatability	in [µm]	±0.0004 [±10]	±0.000 8 [2.0]	±0.000 06 [1.5]	±0.000 04 [1.0]		
Accuracy – LME		±(30µm +50µm/m)	±(25µm +50µm/m)				
Accuracy – Renishaw			±(5μm +30μm/m)				

Note: For travels less than 1 meter, accuracy should be calculated at 1 meter

MOTOR MODEL		310-2	310-3	310-4	310-5	310-6
Peak Force	Ν	409.3	600.0	790.0	980.0	1170.0.1
	lb	92.0	135.1	177.2	220.3	263.2
Continuous Force	Ν	91.6	133.9	176.2	219.3	262.0
	lb	20.6	30.1	39.6	49.3	589
Peak Power	W	1885	2693	3500	4308	5116
Continuous Power	W	4	135	179	215	256

ACCURACY	STANDARD	LASER ALIGNMENT OPTION
Straightness restrained on flat surface in $\left[\mu m\right]$	±0.000127in/in [±127µm/m]	±.000013 in/in [13µm/m]
Flatness restrained on flat surface in [µm]	±0.003 + .000254 in/in [±76 + 254µm/m]	

Note: For travels less than 1 meter, Flatness should be calculated at 1 meter

Straightness/Flatness specifications based on system mounted to surface of flatness ±0.0005in/ft

PHYSICAL		- 2	- 3	- 4	- 5	- 6
Carriage Assembly	lbs [kg]	4.60 [2,1]	6.70 [3,0]	8.10 [3,7]	9.50 [4,3]	11.00 [5,0]
Base Assembly						
T3DA Aluminum (3.375 [~] thick)	lbs/ft [kg/m]	15.75 [23,4]	····· > ·			►
T3DB Aluminum (0.500 ~ thick)	lbs/ft [kg/m]	16.88 [25,1]	••••••			····· >
T3DS Steel (0.500 " thick)	lbs/ft [kg/m]	25.27 [37,6]	•••••		···· ►···	►
Carriage Length	in [mm]	4.20 [106,7]	6.60 [167,6]	9.00 [228,6]	11.40 [289,6]	13.80 [350,5]
Coil Bar Length	in [mm]	7.20 [182,9]	9.60 [243,8]	12.00 [304,8]	14.40 [365,8]	16.80 [426,7]

LOAD		- 2	- 3	- 4	- 5	- 6
Vertical (Fv) see note 11	lbs [kg]	120 [54]	150 [68]	180 [81]	210 [95]	240 [108]
Side (Fs) see note 11	lbs [kg]	80 [36]	100 [45]	100 [45]	100 [45]	100 [45]
Moments-Roll (Mr) see note 11	lb-ft [N-m}	80 [107]	100 [134]	100 [134]	100 [134]	100 [134]
Moments–Pitch (Mp) see note 11	lb-ft [N-m}	160 [214]	300 [402]	300 [402]	300 [402]	300 [402]
Moments–Yaw (My) see note 11	lb-ft [N-m}	160 [214]	300 [402]	300 [402]	300 [402]	300 [402]

- 1 Total travel = $OAL 3.00^{\circ}$ (76.2 mm) carriage length.
- 2 Maximum base length is 120⁻ (3048 mm).
- 3 Aluminum base is black anodized. Steel base is nickel plated.
- 4 For complete motor specifications, refer to 310 series motor data sheet.
- 5 Renishaw encoder, RGH24 series, available in 0.05.0μm. 0.1μm, 0.5μm, 1.0μm, 5.0μm.
- 6 Cable extends past base by approximately 0.6" when carriage is at negative hard stop.
- 7 Cable Track extends 0.175⁻ higher than carriage mounting surface. It is recommended to use optional Spacer Plate for custom mounting holes.
- 8 Standard cable track provided is Igus 07.30.018.
- 9 Base mounting holes are equidistant, 1.200⁻ (12.0, 16.8, 21.6...) or 2.400⁻ (9.6, 14.4, 19.2, 24.0...) from each end depending on base length.
- 10 Specification subject to change without notice.
- 11 Listed specifications based on motor size and typical performance requirements Bearing manufacturer specifications exceed listed specifications.

T3D Dimensions

CARRIAGE SIZE										
	-2	mm	-3	mm	-4	mm	-5	mm	-6	mm
CL	4.200	106.68	6.600	167.64	9.000	228.60	11.400	289.56	13.800	350.52
A	3.200	81.28	5.650	142.24	8.000	203.20	10.400	264.16	12.800	325.12
В	—		2.800	71.12	4.000	101.60	5.200	132.08	6.400	162.56
COIL	310-2	310-2 310-3		310)-4	31	0-5	310)-6	

I-Force Ironless Motor Positioner

T3S Specifications

PERFORMANCE		LINEAR MAGI 5.0µm	NETIC ENCODER 1.0.1µm	RENISHAW ENCOI 0.5µm	DER OPTIONS (Note 5) 0.1µm	
Peak Velocity	in/s [m/s]	275 [7]	100 [2.5]	120 [3]	15 [0.4]	
Resolution	in [µm]	0.0002 [5]	0.000 04 [1.0]	0.000 02 [0.5]	0.000 004 [0.1]	
Repeatability	in [µm]	±0.0004 [±10]	±0.000 8 [2.0]	±0.000 06 [1.5]	±0.000 04 [1.0]	
Accuracy – LME		±(30µm +50µm/m)	±(25µm +50µm/m)			

Accuracy – Renishaw

Note: For travels less than 1 meter, accuracy should be calculated at 1 meter

MOTOR MODEL		310-2	310-3	310-4	310-5	310-6
Peak Force	Ν	409.3	600.0	790.0	980.0	1170.0.1
	lb	92.0	135.1	177.2	220.3	263.2
Continuous Force	Ν	91.6	133.9	176.2	219.3	262.0
	lb	20.6	30.1	39.6	49.3	589
Peak Power	W	1885	2693	3500	4308	5116
Continuous Power	W	4	135	179	215	256

ACCURACY	STANDARD	LASER ALIGNMENT OPTION
Straightness restrained on flat surface in [µm]	±0.000127 [±127µm/m]	±.00013 in/in [±13µm/m]
Flatness restrained on flat surface in [µm]	±0.003 + .00254 in/in [±76 + 254µm/m]	

Note: For travels less than 1 meter, Flatness should be calculated at 1 meter

Straightness/Flatness specifications based on system mounted to surface of flatness ±0.0005in/ft

PHYSICAL		- 2	- 3	- 4	- 5	- 6
Carriage Assembly	lbs [kg]	3.00 [1,4]	4.40 [2,0]	5.50 [2,5]	6.40 [2,9]	7.40 [3,3]
Base Assembly						
T3SA Aluminum (3.375 [~] thick)	lbs/ft [kg/m]	13.30 [19,8]	·····			►
T3SB Aluminum (0.500 ~ thick)	lbs/ft [kg/m]	14.25 [21,2]	····· > ·			····· ►
T3SS Steel (0.500 ~ thick)	lbs/ft [kg/m]	21.24 [31,6]	••••••	···· ►···	····· ►···	····· ►
Carriage Length	in [mm]	4.20 [106,7]	6.60 [167,6]	9.00 [228,6]	11.40 [289,6]	13.80 [350,5]
Coil Bar Length	in [mm]	7.20 [182,9]	9.60 [243,8]	12.00 [304,8]	14.40 [365,8]	16.80 [426,7]

LOAD		- 2	- 3	- 4	- 5	- 6
Vertical (Fv) see note 11	lbs [kg]	80 [36]	100 [45]	120 [54]	140 [63]	160 [72]
Side (Fs) see note 11	lbs [kg]	30 [13]	50 [22]	50 [22]	50 [22]	50 [22]
Moments-Roll (Mr) see note 11	lb-ft [N-m}	35 [47]	50 [67]	50 [67]	50 [67]	50 [67]
Moments–Pitch (Mp) see note 11	lb-ft [N-m}	75 [100]	150 [201]	150 [201]	150 [201]	150 [201]
Moments-Yaw (My) see note 11	lb-ft [N-m}	75 [100]	150 [201]	150 [201]	150 [201]	150 [201]

NOTES

- 1 Total travel = OAL 3.00° (76.2 mm) carriage length.
- 2 Maximum base length is 120[°] (3048 mm).
- 3 Aluminum base is black anodized. Steel base is nickel plated.
- 4 For complete motor specifications, refer to 310 series motor data sheet.
- 5 Renishaw encoder, RGH24 series, available in 0.05.0μm. 0.1μm, 0.5μm, 1.0μm, 5.0μm.
- $6\,$ Cable extends past base by approximately 0.6" when carriage is at negative hard stop.
- 7 Cable Track extends 0.175⁻ higher than carriage mounting surface. It is recommended to use optional Spacer Plate for custom mounting holes.

±(5µm +30µm/m)

- 8 Standard cable track provided is Igus 07.30.018.
- 9 Base mounting holes are equidistant, 1.200⁻ (12.0, 16.8, 21.6...) or 2.400⁻ (9.6, 14.4, 19.2, 24.0...) from each end depending on base length.
- 10 Specification subject to change without notice.
- 11 Listed specifications based on motor size and typical performance requirements Bearing manufacturer specifications exceed listed specifications.

T3S Dimensions

TOTAL TRAVEL = OAL - 3.00" (76.2) - CARRIAGE LENGTH OAL = MULTIPLE OF 2.400" (60.96)

	CARRIAGE SIZE									
	-2	mm	-3	mm	-4	mm	-5	mm	-6	mm
CL	5.000	127.00	6.600	167.64	9.000	228.60	11.400	289.56	13.800	350.52
A	4.000	101.60	5.650	142.24	8.000	203.20	10.400	264.16	12.800	325.12
В	2.000	50.8	2.800	71.12	4.000	101.60	5.200	132.08	6.400	162.56
COIL	310-2 310-3 310-4 310-5 310-6						-6			

I-Force Ironless Motor Positioner

PERFORMANCE		LINEAR MAGI 5.0µm	NETIC ENCODER 1.0.1µm	RENISHAW ENCOD 0.5µm	er options (Note 5) 0.1μm
Peak Velocity	in/s [m/s]	275 [7]	100 [2.5]	120 [3]	15 [0.4]
Resolution	in [µm]	0.0002 [5]	0.000 04 [1.0]	0.000 02 [0.5]	0.000 004 [0.1]
Repeatability	in [µm]	±0.0004 [±10]	±0.000 8 [2.0]	±0.000 06 [1.5]	±0.000 04 [1.0]
Accuracy – LME		±(30µm +50µm/m)	±(25µm +50µm/m)		
Accuracy – Renishaw				±(5µm +	30µm/m)

Note: For travels less than 1 meter, accuracy should be calculated at 1 meter

±(5	μm	+30	μm/	/m

MOTOR MODEL		410-2	410-3	410-4	410-6	410-8
Peak Force	Ν	1041.4	1523.6	2006.3	2967.2	3928.1
	lb	234.1	342.5	451.0	667.0	883.0
Continuous Force	Ν	233.1	340.8	448.9	663.7	878.6
	lb	52.4	76.6	100.9	149.2	197.5
Peak Power	W	2835	4050	5265	7695	10125
Continuous Power	W	142	203	263	385	506

ACCURACY	STANDARD	LASER ALIGNMENT OPTION
Straightness restrained on flat surface in $\left[\mu m\right]$	±0.000127 in/in [±127µm/m]	±.000013 in/in [±13µm/m]
Flatness restrained on flat surface in [µm]	±.003 + .000254 in/in [±76 + 254µm/m]	

Note: For travels less than 1 meter. Flatness should be calculated at 1 meter

Straightness/Flatness specifications based on system mounted to surface of flatness ± 0.0005 in/ft

PHYSICAL		- 2	- 3	- 4	- 6	- 8
Carriage Assembly						
T4DB Aluminum	lbs [kg]	9.0 [4,1]	14.9 [6,8]	18.1 [8,2]	24.1 [10,9]	30.2 [13,7]
T4DS Steel	lbs [kg]	13.29 [6,0]	22.20 [10,1]	28.46 [12,9]	40.51 [18,4]	52.59 [23,9]
Base Assembly						
T4DB Aluminum	lbs/ft [kg/m]	29.4 [43,8]	····· •	····· ►···		▶
T4DS Steel	lbs/ft [kg/m]	39.3 [58,5]	····· > ·	····· ►···		▶
Carriage Length	in [mm]	4.80 [121,9]	8.15 [207,0]	11.50 [292,1]	18.20 [462,3]	24.90 [632,5]
Coil Bar Length	in [mm]	10.00 [254]	13.36 [339]	16.72 [424]	23.44 [595]	30.16 [766]

LOAD		- 2	- 3	- 4	- 6	- 8
Vertical (Fv) see note 11	lbs [kg]	200 [90]	250 [113]	300[136]	400 [181]	400 [181]
Side (Fs) see note 11	lbs [kg]	150 [68]	150 [68]	150 [68]	150 [68]	150 [68]
Moments-Roll (Mr) see note 11	lb-ft [N-m}	100 [133]	150 [200]	150 [200]	150 [200]	150 [200]
Moments-Pitch (Mp) see note 11	lb-ft [N-m}	200 [266]	400 [532]	400 [532]	400 [532]	400 [532]
Moments–Yaw (My) see note 11	lb-ft [N-m}	200 [266]	400 [532]	400 [532]	400 [532]	400 [532]

NOTES

- 1 Total travel = OAL 5.50" (139.7 mm) carriage length.
- 2 Maximum base length is 120" (3048)
- 3 Aluminum base is black anodized. Steel base is nickel plated.
- 4 For complete motor specifications, refer to 410 series motor data sheet.
- Renishaw encoder, RGH24 series, available in 0.05.0µm. 5 0.1µm, 0.5µm, 1.0µm, 5.0µm.
- 6 Cable extends past base by approximately 0.6" when carriage is at negative hard stop.
- 7 Cable Track extends 0.175" higher than carriage mounting surface. It is recommended to use optional Spacer Plate for custom mounting holes.
- 8 Standard cable track provided is Igus 07.30.028.
- 9 Base mounting holes are equidistant, 1.680" (16.80, 23.52....) or 3.360" (20.16, 26.88....) from each end depending on base length.
- 10 Specification subject to change without notice.
- 11 Listed specifications based on motor size and typical performance requirements Bearing manufacturer specifications exceed listed specifications.

T4D Dimensions

C'BORE 0.406 x 0.260 DP

TOTAL TRAVEL = OAL - 5.50" (139.7) - CARRIAGE LENGTH OAL = MULTIPLE OF 3.360" (85.34)

	CARRIAGE SIZE									
	-2	mm	-3	mm	-4	mm	-6	mm	-8	mm
CL	4.800	121.92	8.150	207.01	11.500	292.10	18.200	462.28	24.900	632.46
Α	3.800	96.52	7.150	181.61	10.500	266.70	17.200	436.88	23.900	607.66
В		_	3.575	90.805	5.250	133.35	8.600	218.44	11.950	303.53
COIL	410	-2	41()-3	410-	4	410-	6	410-	8

I-Force Ironless Motor Positioner

PERFORMANCE		LINEAR MAGNET	TIC ENCODER	RENISHAW ENCODER		
I EKI OKMANOE		5.0 μ m	1.0µm	0.5μm	0.1µm	
Peak Velocity	in/s [m/s]	275 [7]	100 [2.5]	120 [3]	15 [0.4]	
Resolution	in [µm]	0.0002 [5]	0.000 04 [1.0]	0.000 02 [0.5]	0.000 004 [0.1]	
Repeatability	in [µm]	±0.0004 [±10]	±0.000 8 [2.0]	±0.000 06 [1.5]	±0.000 04 [1.0]	
Accuracy – LME		±(30μm +50μm/m)	±(25μm +50μm/m)			

 \pm (30µm +50µm/m) \pm (25µm +50µm/m)

Accuracy - Renishaw

Note: For travels less than 1 meter, accuracy should be calculated at 1 meter

±(5µm +30µm/m)

MOTOR MODEL		410-2	410-3	410-4	410-6	410-8
Peak Force	Ν	1041.4	1523.6	2006.3	2967.2	3928.1
	lb	234.1	342.5	451.0	667.0	883.0
Continuous Force	Ν	233.1	340.8	448.9	663.7	878.6
	lb	52.4	76.6	100.9	149.2	197.5
Peak Power	W	2835	4050	5265	7695	10125
Continuous Power	W	142	203	263	385	506

ACCURACY	STANDARD	LASER ALIGNMENT OPTION
Straightness restrained on flat surface in $\left[\mu m\right]$	±0.000125in/in [±127µm/m]	±0.000013 in/in [±13µm/m]
Flatness restrained on flat surface in $[\mu m]$	$\pm 0.003 + .000254$ in/in [$\pm 76 + 254 \mu$ m/m]	

Note: For travels less than 1 meter, Flatness should be calculated at 1 meter

Straightness/Flatness specifications based on system mounted to surface of flatness ± 0.0005 in/ft

PHYSICAL		- 2	- 3	- 4	- 6	- 8
Carriage Assembly						
T4SB Aluminum	lbs [kg]	6.5 [3,0]	10.3 [4,7]	13.0 [5,9]	17.8 [8,1]	22.7 [10,3]
T4SS Steel	lbs [kg]	8.78 [4,0]	14.22 [6,5]	18.47 [8,4]	26.49 [12,0]	34.54 [15,7]
Base Assembly						
T4SB Aluminum	lbs/ft [kg/m]	26.7 [39,8]	····· •			····· ►
T4SS Steel	lbs/ft [kg/m]	34.9 [52,0]	····· > ··			····· ►
Carriage Length	in [mm]	4.80 [121,9]	8.15 [207,0]	11.50 [292,1]	18.20 [462,3]	24.90 [632,5]
Coil Bar Length	in [mm]	10.00 [254]	13.36 [339]	16.72 [424]	23.44 [595]	30.16 [766]

LOAD		- 2	- 3	- 4	- 6	- 8
Vertical (Fv) see note 11	lbs [kg]	150 [68]	175 [79]	175 [79]	200 [90]	200 [90]
Side (Fs) see note 11	lbs [kg]	75 [34]	75 [34]	75 [34]	75 [34]	75 [34]
Moments-Roll (Mr) see note 11	lb-ft [N-m}	50 [66]	100 [133]	100 [133]	100 [133]	100 [133]
Moments–Pitch (Mp) see note 11	lb-ft [N-m}	100 [133]	200 [266]	200 [266]	200 [266]	200 [266]
Moments-Yaw (My) see note 11	lb-ft [N-m}	100 [133]	200 [266]	200 [266]	200 [266]	200 [266]

NOTES

- 1 Total travel = OAL 5.50" (139.7 mm) carriage length.
- 2 Maximum base length is 168", 4.2 meters.
- 3 Aluminum base is black anodized. Steel base is nickel plated.
- 4 For complete motor specifications, refer to 410 series motor data sheet.
- Renishaw encoder, RGH24 series, available in 0.05µm, 0.1µm, 0.5µm, 5 1.0µm, 5.0µm.
- 6 Cable extends past base by approximately 0.6" when carriage is at negative hard stop.
- Cable Track extends 0.175⁻ higher than carriage mounting surface. It is 7 recommended to use optional Spacer Plate for custom mounting holes.
- 8 Standard cable track provided is Igus 07.30.028.
- Base mounting holes are equidistant, 1.680" (16.80, 23.52....) or 9 3.360" (20.16, 26.88....) from each end depending on base length.
- 10 Specification subject to change without notice.
- Listed specifications based on motor size and typical performance require 11 Bearing manufacturer specifications exceed listed specifications.

T4S Dimensions

CARRIAGE SIZE										
	-2	mm	-3	mm	-4	mm	-6	mm	-8	mm
CL	4.800	121.92	8.150	207.01	11.500	292.10	18.200	462.28	24.900	632.46
A	3.800	96.52	7.150	181.61	10.500	266.70	17.200	436.88	23.900	607.66
В	—	_	3.575	90.805	5.250	133.35	8.600	218.44	11.950	303.53
COIL	410-2		410-3		410-4		410-6		410-8	

*Consult factory for longer lengths.

T4S-T4D/B4D

*Consult factory for longer lengths.

Additional information available on: www.parker-eme.com/trilogy_positioner

Parker Hannifin

The global leader in motion and control technologies and systems

Global Partnerships Global Support

Parker is committed to helping make our customers more productive and more profitable through our global offering of motion and control products and systems. In an increasingly competitive global economy, we seek to develop customer relationships as technology partnerships. Working closely with our customers, we can ensure the best selection of technologies to suit the needs of our customers' applications.

Electromechanical Technologies for High Dynamic Performance and Precision Motion

Parker electromechanical technologies form an important part of Parker's global motion and control offering. Electromechanical systems combine high performance speed and position control with the flexibility to adapt the systems to the rapidly changing needs of the industries we serve. aerospace climate control electromechanical filtration fluid & gas handling hydraulics pneumatics process control sealing & shielding

Parker Hannifin Corporation

With annual sales exceeding \$12 billion, Parker Hannifin is the world's leading diversified manufacturer of motion and control technologies and systems, providing precision-engineered solutions for a wide variety of commercial, mobile, industrial and aerospace markets. The company employs more than 62,000 people in 48 countries around the world. Parker has increased its annual dividends paid to shareholders for 52 consecutive years, among the top five longest-running dividendincrease records in the S&P 500 index. For more information, visit the company's web site at www.parker.com, or its investor information site at www.phstock.com.

46

Electromechanical Automation

Global products with local manufacturing and support

Global Product Design

Parker Hannifin has more than 40 years' experience in the design and manufacturing of drives, controls, motors and mechanical products. With dedicated global product development teams, Parker draws on industry-leading technological leadership and experience from engineering teams in Europe, North America and Asia.

Local Application Expertise

Parker has local engineering resources committed to adapting and applying our current products and technologies to best fit our customers' needs. Parker's engineering resources also extend to the development and manufacture of complete systems for continuous process and motion control applications.

Manufacturing to Meet **Our Customers' Needs**

Parker is committed to meeting the increasing service demands that our customers require to succeed in the global industrial market. Parker's manufacturing teams seek continuous improvement through the implementation of lean manufacturing methods throughout the process. We measure ourselves on meeting our customers' expectations of quality and delivery, not just our own. In order to meet these expectations, Parker operates and continues to invest in our manufacturing facilities in Europe, North America and Asia. This allows us to minimize transportation time and cost and to be able to respond more quickly to customer needs.

Worldwide Electromechanical Automation **Manufacturing Locations**

Europe Littlehampton, United Kingdom Dijon, France Offenburg, Germany Milan, Italy

Asia Shanghai, China Chennai, India

North America

Charlotte, North Carolina Rohnert Park, California Irwin, Pennsylvania Wadsworth, Ohio Port Washington, New York New Ulm, Minnesota

Offenburg, Germany

Littlehampton, UK

Local Manufacturing and Support in Europe

Parker provides sales assistance and local technical support through a group of dedicated sales teams and a network of authorized technical

distributors throughout Europe. For contact information, please refer to the Sales Offices on the back cover of this document or visit www.parker.com.

Milan, Italy

Manufacturing

Distributors

Dijon, France

Solutions to Improve Productivity, Increase Flexibility and Save Energy

Process Productivity and Reliability

Parker brings together the technology and experience required for continuous process applications across many industries. AC and DC variable speed drive products combined with application-specific function block-based configuration software ensure precise speed control and reliable performance. Parker combines more than 30 years of application experience with a global sales and support network that help you increase your machine availability.

and Reliability	AC Drives	DC Drives	Direct Drive Motors	Servo Drives and Motors			
Converting machinery		_	02				
Folding, gluing, stitching and collating	1	1		1			
Coating, laminating and foil stamping	1	1	1	1			
Slitting, cutting and rewinding	1	1	1	1			
Plastics processing machinery							
Plastic extrusion	1		1				
Injection moulding	1		1	1			
Thermal forming	1		1	1			
Wire and cable							
Wire and cable manufacturing	1	1		1			
Winding/unwinding	1	1	1				
Extrusion for wire and cable	1	1	1				
Printing Machinery							
Web/sheetfed offset	1		1	1			
Flexo printing	1		1	1			
Gravure printing	1		1	1			
Shaftless printing	1		1	1			
Other industries							
Paper machinery	1		1				
Sugar processing	1	1					
Steel production	1	1	1				
Construction materials	1	1					
Automotive test rigs	1	1	1				

Energy Efficiency and Clean Power

Parker has developed the technology to maximize the efficient use of energy in industrial, mobile and infrastructure environments.

Hybrid Vehicle Technology

Parker has adapted its electric drive technologies for use in hybrid electric vehicles, including utility vehicles and passenger vehicles. Examples include inverters and motor drives, as well as electric drive motors.

Energy Savings for Pumps, Fans and Compressors

Parker has the drive technology to help you make significant energy savings in the operation of pumps, fans and compressors in both industrial and infrastructure applications, including:

- Commercial refrigeration
- Water and wastewater treatment
- Building automation
- Industrial processes
- Hydraulic systems

ω ...

Power Generation and Conversion

Using proven inverter technology, Parker has developed numerous solutions for the conversion of energy for commercial use from a variety of sources, including wind, wave and energy storage devices.

Motion Control Systems for **Total Production Flexibility**

Parker's electromechanical automation customers enjoy total production flexibility in their general and precision motion control applications. Complete packaged linear positioning systems, coupled to servo and stepper drives and controls, enable our customers to develop a complete motion solution with one partner. Parker provides the products for a wide range of motion needs- power, speed, travel, forcewith easy to use controls designed to work on multiple control and communication platforms. Additionally, Parker's products can be easily customized to suit specific applications.

Assembly machinery	Mechanical Actuators	Motors and Gearheads	Drives	Controls	ШШ			
Pick and place	1	1	1	1	1			
Lifting	1	· ·	1					
Transfer machinery	1	1	1	1	1			
Automotive assembly								
Resistance welding	1	1	1	1				
Painting applications	1	1	1	1	1			
Transfer machinery	1	1	1	1	1			
Packaging machinery								
Primary, secondary, tertiary	1	1	1	1	1			
Handling machinery	1	1	1	1	1			
Food processing machinery	1	1	1	1				
Processing machinery		<i>,</i>	<i>v</i> <i>v</i>	, ,				
Packaging machinery					1			
Handling machinery	1	1	1	1	~			
Material handling systems								
Transfer systems	1	1	1	1	1			
Pick and place systems	1	1	1	1	1			
Matal farming maaking w								
Metal forming machinery Presses	1	1	1	1	5			
Tube bending	· ·	· ·	1	· ·	· ·			
Handling applications	· /	1	1		· ·			
	•	•	·	•	•			
Machine tools								
Spindles		1	1					
Ancillary axes		1	1					
Semiconductor machinery								
Front end processes	1	1	1	1	5			
Inspection machinery			1					
Packaging machinery	1	1	1	1	1			
Lithography	1	1	1	1				
Medical devices								
Device manufacturing	1	1	1	1	1			
Product packaging and dispensing	1	1	1	1	1			
Scanning equipment	1	1	1					
Pumps and analyzers		1	1					
Entertainment								
Theatre and studio automation	1	1	1	1				
Simulation and amusement rides	1	1	1					

49

Complete Range of Solutions

Remote I/O

Value Added Services

In addition to providing products and systems, Parker also provides a number of value added services to our customers:

- Programming and commissioning services
- Power quality and energy surveys
- 24-hour support and service
- Product repairs
- Product training

Customization

Many automation applications cannot be solved with off the shelf products. Parker's products are designed to be versatile as well as easy to configure for the majority of industrial and process applications. Some customers require solutions that can't be found in a catalogue, and Parker has the resources and expertise available to provide customized solutions:

- Custom motor designs
- Customized mechanical positioning systems
- Customized control functionality
- Customized communication solutions

System Solutions

Parker offers system design and manufacturing in two main categories:

Drive Systems

Complete AC and DC drive systems across a wide power range, from less than 1 kW to more than 1 MW. Systems typically include electrical enclosure, ancillary electronic equipment and full documentation. Commissioning and support services are standard.

Mechanical Systems

Parker has more than 20 years of experience in providing a variety of multiple axis mechanical positioning systems, complete with motors, drives and controls. Typical applications include material transfer and pick and place gantry systems. Additionally, Parker designs and builds custom precision positioning systems, integrating precision bearing, feedback and drive systems, including Parker's range of linear servo motors. Each system ships complete with motors, drives and controls, and can include the programming and commissioning.

Parker Worldwide

AE – UAE, Dubai Tel: +971 4 8127100 parker.me@parker.com

AR – Argentina, Buenos Aires Tel: +54 3327 44 4129

AT – Austria, Wiener Neustadt Tel: +43 (0)2622 23501-0 parker.austria@parker.com

AT – Eastern Europe, Wiener Neustadt Tel: +43 (0)2622 23501 900 parker.easteurope@parker.com

AU – Australia, Castle Hill Tel: +61 (0)2-9634 7777

AZ – Azerbaijan, Baku Tel: +994 50 2233 458 parker.azerbaijan@parker.com

BE/LU – Belgium, Nivelles Tel: +32 (0)67 280 900 parker.belgium@parker.com

BR – Brazil, Cachoeirinha RS Tel: +55 51 3470 9144

BY - Belarus, Minsk Tel: +375 17 209 9399 parker.belarus@parker.com

CA – Canada, Milton, Ontario Tel: +1 905 693 3000

CH – Switzerland, Etoy Tel: +41 (0) 21 821 02 30 parker.switzerland@parker.com

CL – Chile, Santiago Tel: +56 2 623 1216

CN – China, Shanghai Tel: +86 21 5031 2525

CZ – Czech Republic, Klecany Tel: +420 284 083 111 parker.czechrepublic@parker.com

DE – Germany, Kaarst Tel: +49 (0)2131 4016 0 parker.germany@parker.com

DK – Denmark, Ballerup Tel: +45 43 56 04 00 parker.denmark@parker.com

ES – Spain, Madrid Tel: +34 902 33 00 01 parker.spain@parker.com

FI – Finland, Vantaa Tel: +358 (0)20 753 2500 parker.finland@parker.com **FR – France,** Contamine s/Arve Tel: +33 (0)4 50 25 80 25 parker.france@parker.com

GR – Greece, Athens Tel: +30 210 933 6450 parker.greece@parker.com

HK – Hong Kong Tel: +852 2428 8008

HU – Hungary, Budapest Tel: +36 1 220 4155 parker.hungary@parker.com

IE – Ireland, Dublin Tel: +353 (0)1 466 6370 parker.ireland@parker.com

IN – India, Mumbai Tel: +91 22 6513 7081-85

IT – Italy, Corsico (MI) Tel: +39 02 45 19 21 parker.italy@parker.com

JP – Japan, Tokyo Tel: +(81) 3 6408 3901

KR – South Korea, Seoul Tel: +82 2 559 0400

KZ – Kazakhstan, Almaty Tel: +7 7272 505 800 parker.easteurope@parker.com

LV – Latvia, Riga Tel: +371 6 745 2601 parker.latvia@parker.com

MX – Mexico, Apodaca Tel: +52 81 8156 6000

MY – Malaysia, Shah Alam Tel: +60 3 7849 0800

NL – The Netherlands, Oldenzaal Tel: +31 (0)541 585 000 parker.nl@parker.com

NO – Norway, Ski Tel: +47 64 91 10 00 parker.norway@parker.com

NZ – New Zealand, Mt Wellington Tel: +64 9 574 1744

PL – Poland, Warsaw Tel: +48 (0)22 573 24 00 parker.poland@parker.com

PT – Portugal, Leca da Palmeira Tel: +351 22 999 7360 parker.portugal@parker.com **RO – Romania,** Bucharest Tel: +40 21 252 1382 parker.romania@parker.com

RU – Russia, Moscow Tel: +7 495 645-2156 parker.russia@parker.com

SE – Sweden, Spånga Tel: +46 (0)8 59 79 50 00 parker.sweden@parker.com

SG – Singapore Tel: +65 6887 6300

SK – Slovakia, Banská Bystrica Tel: +421 484 162 252 parker.slovakia@parker.com

SL – Slovenia, Novo Mesto Tel: +386 7 337 6650 parker.slovenia@parker.com

TH – Thailand, Bangkok Tel: +662 717 8140

TR – Turkey, Istanbul Tel: +90 216 4997081 parker.turkey@parker.com

TW – Taiwan, Taipei Tel: +886 2 2298 8987

UA – Ukraine, Kiev Tel +380 44 494 2731 parker.ukraine@parker.com

UK – United Kingdom, Warwick Tel: +44 (0)1926 317 878 parker.uk@parker.com

US – USA, Cleveland Tel: +1 216 896 3000

VE – Venezuela, Caracas Tel: +58 212 238 5422

ZA – South Africa, Kempton Park Tel: +27 (0)11 961 0700 parker.southafrica@parker.com

Ed. 2009-03-11

European Product Information Centre Free phone: 00 800 27 27 5374 (from AT, BE, CH, CZ, DE, DK, ES, FI, FR, IE, IT, NL, NO, PL, PT, RU, SE, UK, ZA)

We reserve the right to make technical changes. The data correspond to the technical state at the time of printing. @ 2009 Parker Hannifin Corporation

Parker Hannifin GmbH Electromechanical Automation Robert-Bosch-Straße 22 D-77656 Offenburg, Germany +49 (0)781 / 509-0 +49 (0)781 / 509-98176 sales.automation@parker.com www.parker-eme.com 192-570100N2

Oktober 2009