

Trilogy

Linear Motors and Positioners

\triangle
 WARNING - USER RESPONSIBILITY

FAILURE OR IMPROPER SELECTION OR IMPROPER USE OF THE PRODUCTS DESCRIBED HEREIN OR RE-

 LATED ITEMS CAN CAUSE DEATH, PERSONAL INJURY AND PROPERTY DAMAGE.- This document and other information from Parker-Hannifin Corporation, its subsidiaries and authorized distributors provide product or system options for further investigation by users having technical expertise.
- The user, through its own analysis and testing, is solely responsible for making the final selection of the system and components and assuring that all performance, endurance, maintenance, safety and warning requirements of the application are met. The user must analyze all aspects of the application, follow applicable industry standards, and follow the information concerning the product in the current product catalog and in any other materials provided from Parker or its subsidiaries or authorized distributors.
- To the extent that Parker or its subsidiaries or authorized distributors provide component or system options based upon data or specifications provided by the user, the user is responsible for determining that such data and specifications are suitable and sufficient for all applications and reasonably foreseeable uses of the components or systems.

I-FORCE Ironless linear motors

Parker Trilogy's I-Force ironless linear motors offer high forces and rapid accelerations in a compact package. With forces ranging from $5.5 \mathrm{lbf}(24.5 \mathrm{~N})-197.5 \mathrm{lbf}(878.6 \mathrm{~N})$ continuous up to $5.5 \mathrm{lbf}(24.5 \mathrm{~N})$ - (883 lbf (3928 N) peak, the I-Force family offers a superior combination of performance and size.

The I-Force patented I-beam shape with its overlapping windings allows for a higher power density in a smaller motor, improved heat removal, and added structural stiffness. In addition, the ironless (or air core) linear motor design has no attractive force toward the magnets. This allows for easy installation and zero cogging during motion.

Ultra high-flex cables come standard with I-Force motors. In addition, we offer modular magnet tracks for unrestricted travel length. Incredibly smooth motion, high precision and high force density make the I-Force linear motors an ideal solution for your demanding positioning requirements.

Overlapping Windings:

- Increased force density
- Improved heat dissipation
- Lower temperature rise
- Smaller, less expensive motor

No attractive force toward the magnets:

- Easier/Safer assembly and handling, smoother travel (no cogging)

Uses thermally conductive epoxy together with the windings
(Patented RE34674):

- Better heat dissipation

Vacuum encapsulation process:

- Allows motors to be used in high-vacuum environments (Rated at $10^{\wedge}-6$ torr, currently used in $10^{\wedge}-7$ torr applications)

Modular magnet track:

- Unrestricted travel length

Embedded overtemp thermostat or optional thermistor:

- Protects windings against overheating

Ultra high-flex cables:

- Longer cable life, good for millions of cycles

I-Force Ironless Linear Motors

110 Specifications

IFORCE

- Ironless motor, patented, RE34674
- Cross-section: 2.05 "H (50 mm) x 0.82 "W (21 mm)
- Peak forces in two sizes to 45lbs (200N), continuous forces to 10lbs (44N)
- Precision ground 3-piece track (110 model)
- Two lengths of modular magnet tracks allow unlimited length of travel
- Single-piece magnet tracks to 36 " length
- Prealigned imbedded digital Hall effect devices
- Internal thermal cutout switch protects coil

PERFORMANCE

MOTOR MODEL		$\mathbf{1 1 0 - 1}$	$\mathbf{1 1 0 - 2}$
Peak Force	N	108.5	202.5
	Ib	24.4	45.5
Continuous Force	N	24.5	10.4
Peak Power	Ib	5.5	1641
Continuous Power	W	938	82

ELECTRICAL

MOTOR MODEL		110-1			110-2		
WIRING TYPE	UNITS	S-Series	P-Parallel	T-Triple	S-Series	P-Parallel	T-Triple
Peak Current	$A^{\text {pk sine }}$	15.9	31.8	47.7	14.8	29.6	44.4
	(RMS)	11.2	22.5	33.7	10.4	20.9	31.4
Continuous Current	$A^{\text {pk sine }}$	3.6	7.2	10.8	3.3	6.6	9.9
	(RMS)	2.5	5.1	7.6	2.3	4.7	7.0
Force Constant	N/A peak	6.8	3.4	2.3	13.7	6.8	4.6
	lb/A peak	1.5	0.8	0.5	3.1	1.5	1.0
Back EMF	V/m/s	7.9	3.9	2.6	15.7	7.9	5.2
	V/in/s	0.20	0.10	0.07	0.40	0.20	0.13
Resistance $25^{\circ} \mathrm{C}$, phase to phase	ohms	3.8	1.0	0.4	7.6	1.9	1.0
Inductance, phase to phase	mH	1.0	0.3	0.1	2.0	0.5	0.2
Electrical Time Constant	ms	0.3	0.3	0.3	0.3	0.3	0.3
Motor Constant	N/W	3.56	3.56	3.56	5.02	5.02	5.02
	lb/W	0.80	0.80	0.80	1.13	1.13	1.13
Max Terminal Voltage	VDC	330	330	330	330	330	330
THERMAL							
MOTOR MODEL			110-1		110-2		
Thermal Resistance Wind-Amb	degC / W		1.59		0.92		
Thermal Time Constant	min		3.2		3.2		
Maximum Winding Temperature	${ }^{\circ} \mathrm{C}$		100		100		
MECHANICAL							
MOTOR MODEL			110-1		110-2		
Coil Weight	kg		0.12		0.22		
	lb		0.27		0.48		
Coil Length	mm		81.3		142.2		
	in		3.20		5.60		
Attractive Force	N		0		0		
	lbf		0		0		
Electrical Cycle Length	mm		60.96		60.96		
	in		2.40		2.40		

(A) ENGLISH TOP MOUNTING

COIL SIZE (inches)	L	N	A	B	C
$110-1 \mathrm{~A}$	3.20	4	0.50	2.70	---
$110-2 \mathrm{~A}$	5.60	6	0.50	2.80	5.10

(M) METRIC TOP MOUNTING

COIL SIZE (mm)	L	N	A	B	C
$110-1 M$	81.3	4	12.7	68.6	---
$110-2 M$	142.2	6	12.7	71.1	129.5

(B) ENGLISH SIDE MOUNTING

COIL SIZE (inches)	L	N	A	B
$110-1 B$	3.20	2	0.80	2.40
$110-2 B$	5.60	2	0.80	4.80

(N) METRIC SIDE MOUNTING

COIL SIZE $(\mathbf{m m})$	L	N	A	B
$110-1 \mathrm{~N}$	81.3	2	20.3	60.9
$110-2 \mathrm{~N}$	142.2	2	20.3	121.9

LENGTH ln lnches	MODULAR TRACK LENGTH $\mathbf{n ~ m m}$	QUANTITY $\mathbf{1 1 0 0 7 M}$ $\mathbf{1 1 5 0 7 M}$	QUANTITY $\mathbf{1 1 0 0 9 M}$ $\mathbf{1 1 5 0 9 M}$
7.2	182.9	1	0
9.6	243.8	0	1
12.0	304.8	0	0
14.4	365.8	2	0
16.8	426.7	1	1
19.2	487.7	0	2
21.6	548.6	3	0
24.0	609.6	2	1
26.4	670.6	1	2
28.8	731.5	0	3
31.2	792.5	3	1
33.6	853.4	2	2
36.0	914.4	1	3
38.4	975.4	0	4
40.8	1036.3	3	2
43.2	1097.3	2	3
45.6	1158.2	1	4
48.0	1219.2	0	5
50.4	1280.2	3	3
52.8	1341.1	2	4
55.2	1402.1	1	5
57.6	1463.0	0	6
60.0	1524.0	3	4
62.4	1585.0	2	5
64.8	1645.9	1	6
67.2	1706.9	0	7
69.6	1767.8	3	5
72.0	1828.8	2	6

10xxS						
P/N 110xx	S	L (in)	L (mm)	A	mm	N
11008	S	8.4	205.8	0.20	5.08	3
11009	S	9.6	235.2	0.80	20.32	3
11010	S	10.8	264.6	1.40	35.56	3
11012	S	12.0	294.0	2.00	50.80	3
11013	S	13.2	323.4	2.60	66.04	3
11014	S	14.4	352.8	3.20	81.28	3
11015	S	15.6	382.2	3.80	96.52	3
11016	S	16.8	411.6	0.40	10.16	5
11018	S	18.0	441.0	1.00	25.40	5
11019	S	19.2	470.4	1.60	40.64	5
11020	S	20.4	499.8	2.20	55.88	5
11021	S	21.6	529.2	2.80	71.12	5
11022	S	22.8	558.6	3.40	86.36	5
11024	S	24.0	588.0	4.00	101.60	5
11025	S	25.2	617.4	0.60	15.24	7
11026	S	26.4	646.8	1.20	30.48	7
11027	S	27.6	676.2	1.80	45.72	7
11028	S	28.8	705.6	2.40	60.96	7
11030	S	30.0	735.0	3.00	76.20	7
11031	S	31.2	764.4	3.60	91.44	7
11032	S	32.4	793.8	0.20	5.08	9
11033	S	33.6	823.2	0.80	20.32	9
11034	S	34.8	852.6	1.40	35.56	9
11036	S	36.0	882.0	2.00	50.80	9

SINGLE PIECE 110xxM			
P/N 110xx M	L(in)	L(mm)	N
11002 M	2.4	60.96	1
11004 M	4.8	121.92	2
11007 M	7.2	182.88	3
11009 M	9.6	243.84	4
11012 M	12.0	304.80	5
11014 M	14.4	365.76	6
11016 M	16.8	426.72	7
11019 M	19.2	487.68	8
11021 M	21.6	548.64	9
11024 M	24.0	609.60	10
11026 M	26.4	670.56	11
11028 M	28.8	731.52	12
11031 M	31.2	792.48	13
11033 M	33.6	853.44	14
11036 M	36.0	914.40	15

NOTES

1. Peak force and current based on 5% duty cycle and one second duration.
2. Continuous force and current based on coil winding temperature maintained at $100^{\circ} \mathrm{C}$
3. Force constant is peak of resistive force produced by 1.0 amp thru one motor lead and 0.5 amps thru other two leads. Also, Back EMF (V/in/sec) * $7.665=$ Force constant (ib/amp).
4. Motor resistance measured between any two motor leads with motor connected in Delta winding at $25^{\circ} \mathrm{C}$.

For temperature at $100^{\circ} \mathrm{C}$, multiply resistance by $1.295\left(75^{\circ} \mathrm{C}\right.$ rise * $0.393 \% /{ }^{\circ} \mathrm{C}$)
5. Back EMF measured between any two motor leads while moving at constant velocity. Value is amplitude or 0-Peak of sine wave produced.
6. Motor inductance measured using 1 Kz with the motor in the magnetic field.
7. Electrical Time Constant is time it takes for motor value to reach 63% of its final current after a step change in voltage.

WD3

Thermostat(NC)
Opens at $90^{\circ} \mathrm{C}$

8. Thermal Time Constant is time it takes for motor temperature to reach 63% of its final value after a step change in power.
9. Thermal Resistance is the number of degrees (Celsius) of temperature rise in the winding per watt of power dissipated. Determined experimentally.
10. Motor Constant is a measure of efficiency. Calculated by dividing the force constant by the square root of the motor resistance at maximum operating temperature.
11. Electrical Cycle Length is distance coil must travel to complete 360° electrical cycle.
12. Use TIPS sizing software for the most accurate estimate of coil temperature for a particular motion profile.
13. Motors available with nickel plating or black epoxy coating on magnets. Track part number modified with -N or -B at end. Must be specified at time of order.

TFORCE

- Ironless motor, patented, RE34674
- Cross-section: 2.25 "H (57.1 mm) x 1.25 "W (31.7 mm)
- Peak forces in four sizes to 110lbs (494), continuous forces to 24.8lb (104.5N)
- Precision ground 3-piece track (210 model)
- Two lengths of modular magnet tracks allow unlimited length of travel
- Prealigned imbedded digital HEDs, also available in separate cable from motor leads
- Internal air cooling manifold standard
- Internal thermal cutout switch protects coil

PERFORMANCE

MOTOR MODEL		$\mathbf{2 1 0 - 1}$	$\mathbf{2 1 0 - 2}$	$\mathbf{2 1 0 - 3}$	$\mathbf{2 1 0 - 4}$
Peak Force	N	137.0	255.8	375.0	494.2
	Ib	30.8	57.5	84.3	111.1
Continuous Force	N	30.7	57.4	84.1	110.3
Peak Power	Ib	6.9	12.9	18.9	24.8
Continuous Power	W	905	1583	2261	140

ELECTRICAL

MOTOR MODEL		210-1			210-2			210-3			210-4		
WIRING TYPE	UNITS	S-Series	P-Parallel	T-Triple									
Peak Current	$A^{\text {pk sine }}$	12.6	25.2	37.8	11.8	23.6	35.4	11.5	23	34.5	11.3	22.6	33.9
	(RMS)	8.9	17.8	26.7	8.3	16.7	25.0	8.1	16.3	24.4	8.0	16.0	23.9
Continuous Current	$A^{\text {pk sine }}$	2.8	5.6	8.4	2.6	5.2	7.8	2.6	5.2	7.8	2.5	5.0	7.5
	(RMS)	1.9	3.9	5.9	1.8	3.7	5.5	1.8	3.7	5.5	1.8	3.5	5.3
Force Constant	N/A peak	10.9	5.4	3.6	21.8	10.9	7.3	32.7	16.4	10.9	43.6	21.8	14.5
	lb/A peak	2.5	1.2	0.8	4.9	2.5	1.6	7.4	3.7	2.5	9.8	4.9	3.3
Back EMF	V/m/s	12.6	6.3	4.2	25.2	12.6	8.4	37.8	18.9	12.6	50.4	25.2	16.8
	V/in/s	0.32	0.16	0.11	0.64	0.32	0.21	0.96	0.48	0.32	1.28	0.64	0.43
Resistance $25^{\circ} \mathrm{C}$, phase to phase	ohms	5.9	1.5	0.7	11.8	3.0	1.3	17.7	4.4	2.0	23.6	5.9	2.6
Inductance, phase to phase	mH	2.4	0.6	0.3	4.8	1.2	0.5	7.2	1.8	0.8	9.6	2.4	1.1
Electrical Time Constant	ms	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4
Motor Constant	N/W	4.54	4.54	4.54	6.45	6.45	6.45	7.87	7.87	7.87	9.12	9.12	9.12
	lb/W	1.02	1.02	1.02	1.45	1.45	1.45	1.77	1.77	1.77	2.05	2.05	2.05
Max Terminal Voltage	VDC	330	330	330	330	330	330	330	330	330	330	330	330

THERMAL

MOTOR MODEL	$\mathbf{2 1 0 - 1}$	$\mathbf{2 1 0 - 2}$	$\mathbf{2 1 0 - 3}$	$\mathbf{2 1 0 - 4}$	
Thermal Resistance Wind-Amb	$\operatorname{degC} / \mathrm{W}$	1.67	0.94	0.66	0.51
Thermal Time Constant	\min	4.3	4.3	4.3	4.3
Maximum Winding Temperature	${ }^{\circ} \mathrm{C}$	100	100	100	100

MECHANICAL

MOTOR MODEL		210-1	210-2	210-3	210-4
Coil Weight	kg	0.16	0.27	0.39	0.51
	lb	0.35	0.60	0.86	1.12
Coil Length	mm	81.3	142.2	203.2	264.2
	in	3.2	5.6	8.0	10.4
Attractive Force	N	0	0	0	0
	lbf	0	0	0	0
Electrical Cycle Length	mm	60.96	60.96	60.96	60.96
	in	2.4	2.4	2.4	2.4

Incremental Length: $2.4 \mathrm{in} / 60.96 \mathrm{~mm}$
Minimum Length: $2.4 \mathrm{in} / 60.96 \mathrm{~mm}$
Maximum Length: (For Single Piece) 48in/ 1219.2 mm

Weight/Foot: 5.501bs/ft

Incremental Length: $2.4 \mathrm{in} / 60.96 \mathrm{~mm}$
Minimum Length: $2.4 \mathrm{in} / 60.96 \mathrm{~mm}$
Maximum Length: 48in/1219.2mm
Weight/Foot:
5.50lbs/ft

Incremental Length:

$1.2 \mathrm{in} / 30.48 \mathrm{~mm}$
Minimum Length:
$8.4 \mathrm{in} / 213.4 \mathrm{~mm}$

Maximum Length:

 48in/1219.2mmWeight/Foot: 5.50lbs/ft
(A) ENGLISH TOP MOUNTING

(B) ENGLISH SIDE MOUNTING

COIL SIZE (inches)	L	N	A	B	C
$210-1 \mathrm{~A}$	3.20	5	0.50	1.60	2.70
$210-2 \mathrm{~A}$	5.60	5	0.50	2.80	5.10
$210-3 \mathrm{~A}$	8.00	5	0.50	4.00	7.50
$210-4 \mathrm{~A}$	10.40	5	0.50	5.20	9.90

(M) METRIC TOP MOUNTING

COIL SIZE (inches)	L	N	A	B	C
$210-1 \mathrm{~B}$	3.20	2	1.950	2.950	---
$210-2 \mathrm{~B}$	5.60	2	1.625	3.975	---
$210-3 \mathrm{~B}$	8.00	3	2.438	4.000	5.562
$210-4 \mathrm{~B}$	10.40	3	2.600	5.200	7.800

(N) METRIC SIDE MOUNTING

COIL SIZE (mm)	L	N	A	B	C
$210-1 \mathrm{~N}$	81.3	2	49.5	74.9	---
$210-2 \mathrm{~N}$	142.2	2	41.3	101.0	---
$210-3 \mathrm{~N}$	203.2	3	61.9	101.6	141.3
$210-4 \mathrm{~N}$	264.2	3	66.0	132.1	198.1

$\left.\begin{array}{cccc}\hline & \text { MODULAR TRACK }\end{array}\right]$
*Please note that 72.0 inches is NOT the maximum length for modular tracks

210xxS							
P/N	210xx	S	L (in)	L (mm)	A	mm	N
	21008	S	8.4	205.8	0.20	5.08	3
	21009	S	9.6	235.2	0.80	20.32	3
	21010	S	10.8	264.6	1.40	35.56	3
	21012	S	12.0	294.0	2.00	50.80	3
	21013	S	13.2	323.4	2.60	66.04	3
	21014	S	14.4	352.8	3.20	81.28	3
	21015	S	15.6	382.2	3.80	96.52	3
	21016	S	16.8	411.6	0.40	10.16	5
	21018	S	18.0	441.0	1.00	25.40	5
	21019	S	19.2	470.4	1.60	40.64	5
	21020	S	20.4	499.8	2.20	55.88	5
	21021	S	21.6	529.2	2.80	71.12	5
	21022	S	22.8	558.6	3.40	86.36	5
	21024	S	24.0	588.0	4.00	101.60	5
	21025	S	25.2	614.4	0.60	15.24	7
	21026	S	26.4	646.8	1.20	30.48	7
	21027	S	27.6	676.2	1.80	45.72	7
	21028	S	28.8	705.6	2.40	60.96	7
	21030	S	30.0	735.0	3.00	76.20	7
	21031	S	31.2	764.4	3.60	91.44	7
	21032	S	32.4	793.8	0.20	5.08	9
	21033	S	33.6	823.2	0.80	20.32	9
	21034	S	34.8	842.6	1.40	35.56	9
	21036	S	36.0	882.0	2.00	50.80	9
	21037	S	37.2	911.4	2.60	66.04	9
	21038	S	38.4	940.8	3.20	81.28	9
	21039	S	39.6	970.2	3.80	96.52	9
	21040	S	40.8	999.6	0.40	10.16	11
	21042	S	42.0	1029.0	1.00	25.40	11
	21043	S	43.2	1058.4	1.60	40.64	11
	21044	S	44.4	1127.8	2.20	55.88	11
	21045	S	45.6	1158.2	2.80	71.12	11
	21046	S	46.8	1188.7	3.40	86.36	11
	21048	S	48.0	1219.2	4.00	101.6	11

210xxM1				
P/N	210xx M1	L (in)	L (mm)	N
	21002 M1	2.4	60.96	1
	21004 M1	4.8	121.62	2
	21007 M1	7.2	182.88	3
	21009 M1	9.6	243.84	4
	21012 M1	12.0	304.80	5
	21014 M1	14.4	365.76	6
	21016 M1	16.8	426.72	7
	21019 M1	19.2	487.68	8
	21021 M1	21.6	548.64	9
	21024 M1	24.0	609.60	10
	21026 M1	26.4	670.56	11
	21028 M1	28.8	731.52	12
	21031 M1	31.2	792.48	13
	21033 M1	33.6	853.44	14
	21036 M1	36.0	914.40	15
	21038 M1	38.4	975.36	16
	21040 M1	40.8	1036.32	17
	21043 M1	43.2	1097.28	18
	21045M1	45.6	1158.24	19
	21048 M1	48.0	1219.20	20
M5-0.80 x 0.300 Clearance for \#8-32 or M4 Socket Head Screw				
P/N 21002 M				

SINGLE PIECE 210xxM				
P/N	210xx M	L (in)	L (mm)	N
	21002 M	2.4	60.96	1
	21004 M	4.8	121.62	2
	21007 M	7.2	182.88	3
	21009 M	9.6	243.84	4
	21012 M	12.0	304.80	5
	21014 M	14.4	365.76	6
	21016 M	16.8	426.72	7
	21019 M	19.2	487.68	8
	21021 M	21.6	548.64	9
	21024 M	24.0	609.60	10
	21026 M	26.4	670.56	11
	21028 M	28.8	731.52	12
	21031 M	31.2	792.48	13
	21033 M	33.6	853.44	14
	21036 M	36.0	914.40	15
	21038 M	38.4	975.36	16
	21040 M	40.8	1036.32	17
	21043 M	43.2	1097.28	18
	21045 M	45.6	1158.24	19
	21048 M	48.0	1219.20	20

WD7*

NOTES

1. Peak force and current based on 5% duty cycle and one second duration.
2. Continuous force and current based on coil winding temperature maintained at $100^{\circ} \mathrm{C}$.
3. Force constant is peak of resistive force produced by 1.0 amp thru one motor lead and 0.5 amps thru other two leads. Also, Back EMF (V/in/sec) * $7.665=$ Force constant (lb/amp).
4. Motor resistance measured between any two motor leads with motor connected in Delta winding at $25^{\circ} \mathrm{C}$. For temperature at $100^{\circ} \mathrm{C}$, multiply resistance by $1.295\left(75^{\circ} \mathrm{C}\right.$ rise * $\left.0.393 \% /{ }^{\circ} \mathrm{C}\right)$.
5. Back EMF measured between any two motor leads while moving at constant velocity. Value is amplitude or 0-Peak of sine wave produced.
6. Motor inductance measured using 1 Kz with the motor in the magnetic field.
7. Electrical Time Constant is time it takes for motor value to reach 63% of its final current after a step change in voltage.

WD2

*Preferred Configuration with Parker Drives
8. Thermal Time Constant is time it takes for motor temperature to reach 63% of its final value after a step change in power.
9. Thermal Resistance is the number of degrees (Celsius) of temperature rise in the winding per watt of power dissipated. Determined experimentally.
10. Motor Constant is a measure of efficiency. Calculated by dividing the force constant by the square root of the motor resistance at maximum operating temperature.
11. Electrical Cycle Length is distance coil must travel to complete 360° electrical cycle.
12. Use TIPS sizing software for the most accurate estimate of coil temperature for a particular motion profile.
13. Motors available with nickel plating or black epoxy coating on magnets. Track part number modified with -N or -B at end. Must be specified at time of order.

TFORCE

- Ironless motor, patented, RE34674
- Cross-section: 3.40 "H (86.4 mm) x 1.35 "W (34.3 mm)
- Peak forces in two sizes to 263lbs (1170N), continuous forces to 58lbs (262N)
- Precision ground 3-piece track (310 model)
- Two lengths of modular magnet tracks allow unlimited length of travel
- Single-piece magnet tracks to 66" length
- Prealigned embedded digital HEDs, also available in separate cable from motor leads
- Internal air or liquid cooling available
- Internal thermal cutout switch protects coil

PERFORMANCE

MOTOR MODEL		310-1			310-2			310-3			310-4			310-5			310-6		
Peak Force	N	218.9			409.3			600.0			790.0			980.0			1170.0		
	lb	49.2			92.0			135.1			177.2			220.3			263.2		
Continuous Force	N	49.0			91.6			133.9			176.2			219.3			262.0		
	lb	11.0			20.6			30.1			39.6			49.3			58.9		
Peak Power	W	1077			1885			2693			3500			4308			5116		
Continuous Power	W	54			94			135			179			215			256		
ELECTRICAL																			
MOTOR MODEL		310-1			310-2			310-3			310-4			310-5			310-6		
WIRING TYPE	UNITS	S	P	T	S	P	T	S	P	T	S	P	T	S	P	T	S	P	T
Peak Current	$A^{\text {pk sine }}$	16.1	32.2	48.3	15.0	30.0	45.0	14.7	29.4	44.1	14.5	29.0	43.5	14.4	28.8	43.2	14.3	28.6	42.9
	(RMS)	11.4	22.8	34.2	10.6	21.2	31.8	10.4	20.8	31.2	10.3	20.5	30.8	10.2	20.4	30.5	10.1	20.2	30.3
Continuous Current	$A^{\text {pk sine }}$	3.6	7.2	10.8	3.4	6.8	10.2	3.3	6.6	9.9	3.2	6.4	9.6	3.2	6.4	9.6	3.2	6.4	9.6
	(RMS)	2.5	5.1	7.6	2.4	4.8	7.2	2.5	4.7	7.0	2.3	4.5	6.8	2.3	4.5	6.8	2.3	4.5	6.8
Force Constant	N/A peak	13.7	6.8	4.6	27.3	13.6	9.1	40.9	20.5	13.6	54.7	27.4	18.2	68.1	34.0	22.7	81.8	40.9	27.3
	lb/A peak	3.1	1.5	1.0	6.1	3.1	2.0	9.2	4.6	3.1	12.3	6.2	4.1	15.3	7.7	5.1	18.4	9.2	6.1
Back EMF	V/m/s	15.7	7.8	5.2	31.5	15.7	10.5	47.2	23.6	15.7	63.0	31.5	21.0	78.7	39.4	26.2	94.5	47.2	31.5
	V/in/s	0.40	0.20	0.13	0.80	0.40	0.27	1.20	0.60	0.40	1.60	0.80	0.53	2.00	1.00	0.67	2.40	1.20	0.80
Resistance $25^{\circ} \mathrm{C}$, phase to phase	ohms	4.3	1.1	0.5	8.6	2.2	1.0	12.9	3.2	1.4	17.2	4.3	1.9	21.5	5.4	2.4	25.8	6.5	2.9
Inductance, phase to phase	mH	3.0	0.8	0.3	6.0	1.5	0.7	9.0	2.3	1.0	12.0	3.0	1.3	15.0	3.8	1.7	18.0	4.5	2.0
Electrical Time Constant	ms	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7
Motor Constant	N/W	6.67	6.67	6.67	9.43	9.43	9.43	11.57	11.57	11.57	13.34	13.34	13.34	14.95	14.95	14.95	16.37	16.37	16.37
	lb / W	1.50	1.50	1.50	2.12	2.12	2.12	2.60	2.60	2.60	3.00	3.00	3.00	3.36	3.36	3.36	3.68	3.68	3.68
Max Terminal Voltage	VDC	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330

NOTE: S-Series P-Parallel T-Triple
THERMAL

MOTOR MODEL		$\mathbf{3 1 0 - 1}$	$\mathbf{3 1 0 - 2}$	$\mathbf{3 1 0 - 3}$	$\mathbf{3 1 0 - 4}$	$\mathbf{3 1 0 - 5}$	$\mathbf{3 1 0 - 6}$
Thermal Resistance Wind-Amb	$\mathrm{deg} / \mathrm{W}$	1.39	0.79	0.56	0.35		
Thermal Time Constant	min	7.5	7.5	7.5	7.5	7.5	
Maximum Winding Temperature	${ }^{\circ} \mathrm{C}$	100	100	100	100	100	100

MECHANICAL

MOTOR MODEL		310-1	310-2	310-3	310-4	310-5	310-6
Coil Weight	kg	0.31	0.55	0.80	1.03	1.27	1.53
	lb	0.69	1.22	1.75	2.27	2.80	3.36
Coil Length	mm	81.3	142.2	203.2	264.2	325.1	386.1
	in	3.2	5.6	8.0	10.4	12.8	15.2
Attractive Force	N	0	0	0	0	0	0
	lbf	0	0	0	0	0	0
Electrical Cycle	mm	60.96	60.96	60.96	60.96	60.96	60.96
Length	in	2.4	2.4	2.4	2.4	2.4	2.4

Incremental Length: 2.4in/60.96mm

Minimum Length: 2.4in/60.96mm

Maximum Length: (For Single Piece) $64.8 \mathrm{in} / 1645.9 \mathrm{~mm}$
Weight/Foot:
8.501bs/ft

Incremental Length:
$2.4 \mathrm{in} / 60.96 \mathrm{~mm}$
Minimum Length:
$2.4 \mathrm{in} / 60.96 \mathrm{~mm}$
Maximum Length: 64.8in/ 1645.9 mm

Weight/Foot:
8.50lbs/ft

Incremental Length:
$1.2 \mathrm{in} / 30.48 \mathrm{~mm}$
Minimum Length:
$8.4 \mathrm{in} / 213.4 \mathrm{~mm}$
Maximum Length: $66 \mathrm{in} / 1676.4 \mathrm{~mm}$

Weight/Foot:
8.50 lbs/ft
(A) ENGLISH TOP MOUNTING

COIL SIZE (inches)	L	N	A	B	C
$310-1 \mathrm{~A}$	3.20	5	0.50	1.60	2.70
$310-2 A$	5.60	5	0.50	2.80	5.10
$310-3 A$	8.00	5	0.50	4.00	7.50
$310-4 \mathrm{~A}$	10.40	5	0.50	5.20	9.90
$310-5 \mathrm{~A}$	12.80	5	0.50	6.40	12.30
$310-6 \mathrm{~A}$	15.20	5	1.70	7.60	13.50

(M) METRIC TOP MOUNTING

COIL SIZE (mm)	L	N	A	B	C
$310-1 M$	81.3	5	12.7	40.6	68.6
$310-2 M$	141.2	5	12.7	71.1	129.5
$310-3 M$	203.2	5	12.7	101.6	190.5
$310-4 M$	264.2	5	12.7	132.1	251.5
$310-5 M$	325.1	5	12.7	162.6	312.4
$310-6 M$	386.1	5	43.2	193.0	342.9

(B) ENGLISH SIDE MOUNTING

COIL SIZE (inches)	L	N	A	B	C
$310-1 \mathrm{~B}$	3.20	3	0.50	1.60	2.70
$310-2 \mathrm{~B}$	5.60	3	0.50	2.80	5.10
$310-3 \mathrm{~B}$	8.00	3	0.50	4.00	7.50
$310-4 \mathrm{~B}$	10.40	3	0.50	5.20	9.90
$310-5 B$	12.80	3	0.50	6.40	12.30
$310-6 \mathrm{~B}$	15.20	3	1.70	7.60	13.50

(N) METRIC SIDE MOUNTING

COIL SIZE (mm)	L	N	A	B	C
$310-1 N$	81.3	3	12.7	40.6	68.6
$310-2 N$	141.2	3	12.7	71.1	129.5
$310-3 N$	203.2	3	12.7	101.6	190.5
$310-4 N$	264.2	3	12.7	132.1	251.5
$310-5 N$	325.1	3	12.7	162.6	312.4
$310-6 N$	386.1	3	43.2	193.0	342.9

MODULAR TRACK			
LENGTH	LENGTH	QUANTITY	
In Inches	In mm	QUANTITY 31007M 31507M	31009M 31509M
7.2	182.9	1	0
9.6	243.8	0	1
12.0	304.8	1	0
14.4	365.8	2	0
16.8	426.7	1	1
19.2	487.7	0	2
21.6	548.6	3	0
24.0	609.6	2	1
26.4	670.6	1	2
28.8	731.5	0	3
31.2	792.5	3	1
33.6	853.4	2	2
36.0	914.4	1	3
38.4	975.4	0	4
40.8	1036.3	3	2
43.2	1097.3	2	3
45.6	1158.3	1	4
48.0	1219.2	0	5
50.4	1280.2	3	3
52.8	1341.1	2	4
55.2	1402.1	1	5
57.6	1463.0	0	6
60.0	1524.0	3	4
62.4	1585.0	2	5
64.8	1645.9	1	6
67.2	1706.9	0	7
69.6	1767.8	3	5
72.0	1828.8	2	6

*Please note that 72.0 inches is NOT
the maximum length for modular tracks.

310xxS															
P/N	310xx	S	L (in)	L (mm)	A	A (mm)	N	P/N	310xx	S	L (in)	L (mm)	A	A (mm)	N
	31008	S	8.4	205.8	0.20	5.08	3		31038	S	38.4	940.8	3.20	81.28	9
	31009	S	9.6	235.2	0.80	20.32	3		31039	S	39.6	970.2	3.80	96.52	9
	31010	S	10.8	264.6	1.40	1.40	3		31040	S	40.8	999.6	0.40	10.16	11
	31012	S	12.0	294.0	2.00	50.80	3		31042	S	42.0	1029.0	1.00	25.40	11
	31013	S	13.2	323.4	2.60	66.04	3		31043	S	43.2	1058.4	1.60	40.64	11
	31014	S	14.4	352.8	3.20	81.28	3		31044	S	44.4	1087.8	2.20	55.88	11
	31015	S	15.6	382.2	3.80	96.52	3		31045	S	45.6	1117.2	2.80	71.12	11
	31016	S	16.8	411.6	0.40	10.16	5		31046	S	46.8	1146.6	3.40	86.36	11
	31018	S	18.0	441.0	1.00	25.40	5		31048	S	48.0	1176.0	4.00	101.60	11
	31019	S	19.2	470.4	1.60	40.64	5		31049	S	49.2	1205.4	0.60	15.24	13
	31020	S	20.4	499.8	2.20	55.88	5		31050	S	50.4	1234.8	1.20	30.48	13
	31021	S	21.6	529.2	2.80	71.12	5		31051	S	51.6	1264.2	1.80	45.72	13
	31022	S	22.8	558.6	3.40	86.36	5		31052	S	52.8	1293.6	2.40	60.96	13
	31024	S	24.0	588.0	4.00	101.60	5		31054	S	54.0	1323.0	3.00	76.20	13
	31025	S	25.2	617.4	0.60	15.24	7		31055	S	55.2	1352.4	3.60	91.44	13
	31026	S	26.4	646.8	1.20	30.48	7		31056	S	56.4	1381.8	0.20	5.08	15
	31027	S	27.6	676.2	1.80	45.72	7		31057	S	57.6	1411.2	0.80	20.32	15
	31028	S	28.8	705.6	2.40	60.96	7		31058	S	58.8	1440.6	1.40	35.56	15
	31030	S	30.0	735.0	3.00	76.20	7		31060	S	60.0	1470.0	2.00	50.80	15
	31031	S	31.2	764.4	3.60	91.44	7		31061	S	61.2	1499.4	2.60	66.04	15
	31032	S	32.4	793.8	0.20	5.08	9		31062	S	62.4	1528.8	3.20	81.28	15
	31033	S	33.6	823.2	0.80	20.32	9		31063	S	63.6	1558.2	3.80	96.52	15
	31034	S	34.8	852.6	1.40	35.56	9		31064	S	64.8	1587.6	0.40	10.16	17
	31036	S	36.0	882.0	2.00	50.80	9		31066	S	66.0	1617.0	1.00	25.40	17
	31037	S	37.2	911.4	2.60	66.04	9								

SINGLE PIECE 310xXM				
P/N	310xx M	L (in)	L (mm)	N
	31002 M	2.4	60.96	1
	31004 M	4.8	121.92	2
	31007 M	7.2	182.88	3
	31009 M	9.6	243.84	4
	31012 M	12.0	304.80	5
	31014 M	14.4	365.76	6
	31016 M	16.8	426.72	7
	31019 M	19.2	487.68	8
	31021 M	21.6	548.64	9
	31024 M	24.0	609.60	10
	31026 M	26.4	670.56	11
	31028 M	28.8	731.52	12
	31031 M	31.2	792.48	13
	31033 M	33.6	853.44	14
	31036 M	36.0	914.40	15
	31038 M	38.4	975.36	16
	31040 M	40.8	1036.32	17
	31043 M	43.2	1097.28	18
	31045 M	45.6	1158.24	19
	31048 M	48.0	1219.20	20
	31050 M	50.4	1280.16	21
	31052 M	52.8	1341.12	22
	31055 M	55.2	1402.08	23
	31057 M	57.6	1463.04	24
	31060 M	60.0	1524.00	25
	31062 M	62.4	1584.96	26
	31064 M	64.8	1645.92	27

NOTES

1. Peak force and current based on 5% duty cycle and one second duration.
2. Continuous force and current based on coil winding temperature maintained at $100^{\circ} \mathrm{C}$.
3. Force constant is peak of resistive force produced by 1.0 amp thru one motor lead and 0.5 amps thru other two leads. Also, Back EMF (V/in/sec) * 7.665 = Force constant ((b/amp).
4. Motor resistance measured between any two motor leads with motor connected in Delta winding at $25^{\circ} \mathrm{C}$. For temperature at $100^{\circ} \mathrm{C}$, multiply resistance by $1.295\left(75^{\circ} \mathrm{C}\right.$ rise * $\left.0.393 \% /{ }^{\circ} \mathrm{C}\right)$
5. Back EMF measured between any two motor leads while moving at constant velocity. Value is amplitude or 0-Peak of sine wave produced.
6. Motor inductance measured using 1 Kz with the motor in the magnetic field.
7. Electrical Time Constant is time it takes for motor value to reach 63% of its final current after a step change in voltage.

WD4

*Preferred Configuration with Parker Drives
8. Thermal Time Constant is time it takes for motor temperature to reach 63% of its final value after a step change in power.
9. Thermal Resistance is the number of degrees (Celsius) of temperature rise in the winding per watt of power dissipated. Determined experimentally.
10. Motor Constant is a measure of efficiency. Calculated by dividing the force constant by the square root of the motor resistance at maximum operating temperature.
11. Electrical Cycle Length is distance coil must travel to complete 360° electrical cycle.
12. Use TIPS sizing software for the most accurate estimate of coil temperature for a particular motion profile. 13. Motors available with nickel plating or black epoxy coating on magnets. Track part number modified with -N or -B at end. Must be specified at time of order.

I-Force Ironless Linear Motors

TFORCE

- Ironless motor, patented, RE34674
- Cross-section: 4.50 "H (114.3 mm) x 2.00"W (50.8 mm)
- Peak forces in two sizes to 883lbs (3928N), continuous forces to 197 lbs (878N)
- Precision ground 3-piece track (410 model)
- Two lengths of modular magnet tracks allow unlimited length of travel
- Single-piece magnet tracks to 72.24 " length
- Prealigned embedded digital HEDs, also available in separate cable from motor leads
- Internal air cooling manifold or liquid cooling manifold
- Internal thermal cutout switch protects coil

PERFORMANCE

MOTOR MODEL		410-2	410-3	410-4	410-6	410-8
Peak Force	N	1041.4	1523.6	2006.3	2967.2	3928.1
	lb	234.1	342.5	451.0	667.0	883.0
Continuous Force	N	233.1	340.8	448.9	663.7	878.6
	lb	52.4	76.6	100.9	149.2	197.5
Peak Power	W	2835	4050	5265	7695	10125
Continuous Power	W	142	203	263	385	506

ELECTRICAL

MOTOR MODEL		410-2			410-3			410-4			410-6			410-8		
WIRING TYPE	UNITS	S	P	T	S	P	T	S	P	T	S	P	T	S	P	T
Peak Current	$A^{\text {pk sine }}$	19.1	38.2	57.3	18.6	37.2	55.8	18.4	36.8	55.2	18.1	36.2	54.3	18.0	36.0	54.0
	(RMS)	13.5	27.0	40.5	13.2	23.6	39.5	13.0	26.0	39.0	12.8	25.6	38.4	12.7	25.5	38.2
Continuous Current	$A^{\text {pk sine }}$	4.3	8.6	12.9	4.2	8.4	12.6	4.1	8.2	12.3	4.1	8.2	12.3	4.0	8.0	12.0
	(RMS)	3.0	6.1	9.1	3.0	5.9	8.9	2.9	5.8	8.7	2.9	5.8	5.7	2.8	5.7	8.5
Force Constant	N/A peak	54.5	27.3	18.2	81.8	40.9	27.3	109.0	54.5	36.3	163.7	81.8	54.6	218.4	109.2	72.8
	lb/A peak	12.3	6.1	4.1	18.4	9.2	6.1	24.5	12.3	8.2	36.8	18.4	12.3	49.1	24.6	16.4
Back EMF	V/m/s	63.0	31.5	21.0	94.5	47.2	31.5	126.0	63.0	42.0	189.0	94.5	63.0	252.0	126.0	84.0
V/in/s		1.60	0.80	0.53	2.40	1.20	0.80	3.20	1.60	1.07	4.80	2.40	1.60	6.40	3.20	2.13
Resistance $25^{\circ} \mathrm{C}$, phase to phase	ohms	8.0	2.0	0.9	12.0	3.0	1.3	16.0	4.0	1.8	24.0	6.0	2.7	32.0	8.0	3.6
Inductance, phase to phase	mH	10.0	2.5	1.1	15.0	3.8	1.7	20.0	5.0	2.2	30.0	7.5	3.3	40.0	10.0	4.4
Electrical Time Constant	ms	1.3	1.3	1.3	1.3	1.3	1.3	1.3	1.3	1.3	1.3	1.3	1.3	1.3	1.3	1.3
Motor Constant	N/W	19.57	19.57	19.57	23.98	23.98	23.98	27.67	27.67	27.67	33.90	33.90	33.90	39.14	39.14	39.14
	lb/W	4.40	4.40	4.40	5.39	5.39	5.39	6.22	6.22	6.22	7.62	7.62	7.62	8.80	8.80	8.80
Max Terminal Voltage	VDC	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330

NOTE: S-Series P-Parallel T-Triple
THERMAL

MOTOR MODEL		$\mathbf{4 1 0 - 2}$	$\mathbf{4 1 0 - 3}$	$\mathbf{4 1 0 - 4}$	$\mathbf{4 1 0 - 6}$	$\mathbf{4 1 0 - 8}$
Thermal Resistance Wind-Amb	degC $/$ W	0.53	0.37	0.19		
Thermal Time Constant	min	15.1	15.1	15.1	15.1	
Maximum Winding Temperature	${ }^{\circ} \mathrm{C}$	100	100	100	100	

MECHANICAL

MOTOR MODEL		410-2	410-3	410-4	410-6	410-8
Coil Weight	kg	1.59	2.27	2.95	4.32	5.68
	lb	3.5	5.0	6.5	9.5	12.5
Coil Length	mm	199.1	284.5	369.8	540.5	711.2
	in	7.84	11.20	14.56	21.28	28.00
Attractive Force	N	0	0	0	0	0
	lbf	0	0	0	0	0
Electrical Cycle	mm	85.34	85.34	85.34	85.34	85.34
Length	in	3.36	3.36	3.36	3.36	3.36

(A) ENGLISH TOP MOUNTING

COIL SIZE (in)	L	N	\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}	\mathbf{E}	F	G
$410-2 A$	7.84	5	0.50	3.92	7.34	---	---	---	---
$410-3 \mathrm{~A}$	11.20	8	0.50	1.60	5.60	9.60	10.70	---	---
$410-4 \mathrm{~A}$	14.56	9	0.50	3.28	7.28	11.28	14.06	---	---
$410-6 \mathrm{~A}$	21.28	13	0.50	2.64	6.64	10.64	14.64	18.64	20.78
$410-8 \mathrm{~A}$	28.00	13	2.00	6.00	10.00	14.00	18.00	22.00	26.00

(M) METRIC TOP MOUNTING

COIL SIZE (mm) L	N	A	B	C	D	E	F	G	
$410-2 M$	199.1	5	12.7	99.6	186.4	---	---	---	---
$410-3 M$	284.5	8	12.7	40.6	142.2	243.8	271.8	---	---
$410-4 M$	369.8	9	12.7	83.3	184.9	286.5	357.1	---	---
$410-6 \mathrm{M}$	540.5	13	12.7	67.1	168.7	270.3	371.9	473.4	527.8
$410-8 \mathrm{M}$	711.2	13	50.8	152.4	254.0	355.6	457.2	558.8	660.4

B) ENGLISH SIDE MOUNTING

COIL SIZE (in)	L	N	A	B	C	D	E	F	G	H	I
410-2B	7.84	3	2.90	4.90	6.90	---	---	---	---	---	---
410-3B	11.20	3	4.10	7.10	10.10	---	---	---	---	---	---
410-4B	14.56	4	2.78	5.78	8.78	11.78	---	---	---	---	---
410-6B	21.28	6	3.14	6.14	9.14	12.14	15.14	18.14	---	---	---
410-8B	28.00	9	3.50	6.50	9.50	12.50	15.50	18.50	21.50	24.50	27.50

(N) METRIC SIDE MOUNTING

COIL SIZE (mm)	L	N	A	B	C	D	E	F	G	H	I
$410-2 N$	199.1	3	73.7	124.5	175.3	---	---	---	---	---	---
$410-3 N$	284.5	3	104.1	180.3	256.5	---	---	---	---	---	---
$410-4 N$	369.8	4	70.6	146.8	223.0	299.2	---	---	---	---	---
$410-6 N$	540.5	6	79.7	156.0	232.2	308.4	384.6	460.8	---	---	---
$410-8 N$	711.2	9	88.9	165.1	241.3	317.5	393.7	469.9	546.1	622.3	698.5

LENGTH Inches	MODULAR TRACK		
	LENGTH In mm	QUANTITY 41006M	QUANTITY 41010M
6.72	170.69	1	0
10.08	256.03	0	1
13.44	341.38	0	0
16.80	426.72	1	1
20.16	512.06	0	2
23.52	597.41	2	1
26.88	682.75	1	2
30.24	768.10	0	3
33.60	853.44	2	2
36.96	938.78	1	3
40.32	1024.13	0	4
43.68	1109.47	2	3
47.04	1194.82	1	4
50.40	1280.16	0	5
53.76	1365.50	2	4
57.12	1450.85	1	5
60.48	1536.19	0	6
63.84	1621.54	2	5
67.20	1706.88	1	6
70.56	1792.22	0	7
73.92	1877.57	2	6
77.28	1962.91	1	7
80.64	2048.26	0	8
84.00	2133.60	2	7
87.36	2218.94	1	8
90.72	2304.29	0	9
94.08	2389.63	2	8
97.44	2474.98	1	9

P/N 41003 M

410 xx M1				
P/N	410xx M1	L (in)	L (mm)	N
	41006 M1	6.72	170.69	2
	41010 M1	10.08	256.03	3
	41013 M1	13.44	341.38	4
	41016 M1	16.80	426.72	5
	41020 M1	20.16	512.06	6
	41023 M1	23.52	597.41	7
	41026 M1	26.88	682.75	8
	41030 M1	30.24	768.10	9
	41033 M1	33.60	853.44	10
	41036 M1	36.96	938.78	11
	41040 M1	40.32	1024.13	12
	41043 M1	43.68	1109.47	13
	41047 M1	47.04	1194.82	14
	41050 M1	50.40	1280.16	15
	41053 M1	53.76	1365.50	16
	41057 M1	57.12	1450.85	17
	41060 M1	60.48	1536.19	18
	41063 M1	63.84	1621.54	19
	41067 M1	67.20	1706.88	20
	41070 M1	70.56	1792.22	21

SINGLE PIECE 410xxM					
P/N	410xx	M	L (in)	L (mm)	N
	41003	M	3.36	85.34	1
	41006	M	6.72	170.69	2
	41010	M	10.08	256.03	3
	41013	M	13.44	341.38	4
	41016	M	16.80	426.72	5
	41020	M	20.16	512.06	6
	41023	M	23.52	597.41	7
	41026	M	26.88	682.75	8
	41030	M	30.24	768.10	9
	41033	M	33.60	853.44	10
	41036	M	36.96	938.78	11
	41040	M	40.32	1024.13	12
	41043	M	43.68	1109.47	13
	41047	M	47.04	1194.82	14
	41050	M	50.40	1280.16	15
	41053	M	53.76	1365.50	16
	41057	M	57.12	1450.85	17
	41060	M	60.48	1536.19	18
	41063	M	63.84	1621.54	19
	41067	M	67.20	1706.88	20
	41070	M	70.56	1792.22	21

WD1

WD3

NOTES

1. Peak force and current based on 5% duty cycle and one second duration.
2. Continuous force and current based on coil winding temperature maintained at $100^{\circ} \mathrm{C}$.
3. Force constant is peak of resistive force produced by 1.0 amp thru one motor lead and 0.5 amps thru other two leads. Also, Back EMF (V/in/sec) * 7.665 = Force constant (Ib/amp).
4. Motor resistance measured between any two motor leads with motor connected in Delta winding at $25^{\circ} \mathrm{C}$. For temperature at $100^{\circ} \mathrm{C}$, multiply resistance by $1.295\left(75^{\circ} \mathrm{C}\right.$ rise * $\left.0.393 \% /{ }^{\circ} \mathrm{C}\right)$
5. Back EMF measured between any two motor leads while moving at constant velocity. Value is amplitude or 0-Peak of sine wave produced
6. Motor inductance measured using 1 Kz with the motor in the magnetic field.
7. Electrical Time Constant is time it takes for motor value to reach 63% of its final current after a step change in voltage.

WD2

8. Thermal Time Constant is time it takes for motor temperature to reach 63% of its final value after a step change in power.
9. Thermal Resistance is the number of degrees (Celsius) of temperature rise in the winding per watt of power dissipated. Determined experimentally.
10. Motor Constant is a measure of efficiency. Calculated by dividing the force constant by the square root of the motor resistance at maximum operating temperature
11. Electrical Cycle Length is distance coil must travel to complete 360° electrical cycle
12. Use TIPS sizing software for the most accurate estimate of coil temperature for a particular motion profile.
13. Motors available with nickel plating or black epoxy coating on magnets. Track part number modified with -N or -B at end. Must be specified at time of order.

Motor Coil

Order Example:

Magnet Track:

$$
\begin{array}{lll}
\text { 110xxM: } 11007 \mathrm{M}, 11009 \mathrm{M} & 7.20 ", 9.60 & \text { modular sections } \\
\text { 11507M: } 11507 \mathrm{M}, 11509 \mathrm{M} & 7.20 ", \text {, } 9.60 & \text { modular sections } \\
\text { 110xxM1: 11036M1, max } & 36.00 " \text { max } & \text { single piece, } 2.4 \text { " incr. } \\
\text { 110xxM: 11036M, max } & 36.00 " \text { max } & \text { single piece, 2.4" incr. } \\
\text { 115xxM: 11524M, max } & 24.00 " \text { max } & \text { single piece, 2.4" incr. } \\
\text { 110xxS: 11036M, max } & 36.00 " \text { max } & \text { single piece, } 1.2^{"} \text { incr. }
\end{array}
$$

Motor Coil

Magnet Track:

210xxM: 21007M, 21009M 21507M: 21507M, 21509M 210xxM1: 21048M1 max 210xxM: 21048M max 215xxM: 21524M max 210xxS: 21048S max
7.20", 9.60" modular sections $7.20^{\prime \prime}, 9.60$ " modular sections 48.00 " max single piece, $2.4^{\prime \prime}$ incr. 48.00 " max single piece, $2.4^{\prime \prime}$ incr. $24.00^{\prime \prime}$ max single piece, $2.4^{\prime \prime}$ incr. $48.00^{\prime \prime}$ max single piece, 1.2" incr.

Motor Coil

Order Example:

Magnet Track:

310xxM: 31007M, 31009M $\quad 7.20$ ", 9.60 " modular sections
31507M: 31507M, 31509M 7.20", 9.60" modular sections 310xxM1: 31064M1 max 310xxM: 31064M max 315xxM: 31524 M max $\quad 24.00^{\prime \prime}$ max single piece, $2.4^{\prime \prime}$ incr. $64.8^{\prime \prime}$ max single piece, $2.4^{\prime \prime}$ incr. 310xxS: $\quad 31066 S$ max $\quad 64.8^{\prime \prime}$ max single piece, 1.2" incr.

Motor Coil

Magnet Track:

```
410xxM: 41006M, 41010M 6.72", 10.08" modular sections
410xxM1: 41070M1max
410xxM: 41070M max
    70.56" max single piece, 3.36" incr.
    70.56" max single piece, 3.36" incr.
    70.56" max single piece, 1.68"
```


Additional information available on:
www.parker-eme.com/trilogy_motor

I-FORCE Ironless Linear Positioners

Parker Trilogy's I-Force linear positioners utilize our high-performance I-Force ironless linear motors in a pre-engineered, easily integrated, ready-to-run package. The principal design goal for these positioners is to achieve high performance at an economical cost while preserving the design flexibility to accommodate customization.

Trilogy's positioners have selectable single- or dual-bearing to match the performance and cost requirements for each application. In addition, they are designed to connect together using transition plates for XY or multi-axis configurations. Options include a variety of cable management systems in addition to bellows and hard covers.

Flexibility, multi-axis compatibility, and ease of customization make the l-Force linear positioners a superior choice for high performance and value.

- Trilogy positioners use ground steel or aluminum bases for flatness and parallelism because aluminum extrusions often do not meet the accuracy requirements for straightness and flatness.
- Trilogy has single- or dual-bearing rail positioners to better match the performance and cost requirements for each application.
- Every positioner includes a magnetic encoder for industrial environments or an optical encoder with resolutions down to 0.1 um (0.00004 ").
- Dual-rail positioners have bellows as a standard option.
- Multiple carriage options are available on all positioner series.
- Different cable track widths available for added stiffness and rigidity
- Different cable track widths available as custom options for user payload tubes and cables

MOTOR MODEL		$\mathbf{1 1 0 - 1}$	$\mathbf{1 1 0 - 2}$
Peak Force	N	108.5	202.5
Continuous Force	b	24.4	45.5
Peak Power	N	24.5	45.4
Continuous Power	W	5.5	10.2

ACCURACY	STANDARD	LASER ALIGNMENT OPTION
Straightness restrained on flat surface in $[\mu \mathrm{m}]$	$\pm 0.000127 \mathrm{in} / \mathrm{in}[\pm 127 \mu \mathrm{~m} / \mathrm{m}]$	$\pm .0000127 \mathrm{in} / \mathrm{in}$
Flatness restrained on flat surface in $[\mu \mathrm{m}]$	$\pm 0.013[\pm 330]$	

Note: Straightness/Flatness specifications based on system mounted to surface of flatness $\pm 0.0005 \mathrm{in} / \mathrm{ft}$

LOAD		- 1	- 2
Vertical (Fv) see note 11	$\mathrm{lbs}[\mathrm{kg}]$	$30[13,5]$	$30[13,5]$
Side (Fs) see note 11	$\mathrm{lbs}[\mathrm{kg}]$	$15[6,8]$	$15[6,8]$
Moments-Roll (Mr) see note 11	$\mathrm{lb} \mathrm{ft}[\mathrm{N}-\mathrm{m}]$	$15[20]$	$15[20]$
Moments-Pitch (Mp) see note 11	$\mathrm{lb}-\mathrm{ft}[\mathrm{N}-\mathrm{m}]$	$52[70]$	$52[70]$
Moments-Yaw (My) see note 11	$\mathrm{lb}-\mathrm{ft}[\mathrm{N}-\mathrm{m}]$	$52[70]$	$52[70]$

Dimensions shown in inches.

- Moving Carriage Assembly
- Stationary Base Assembly

+LIMIT
(~ 0.1 FROM HARD STOP)
(2.54)
0.125
(3.175)

TOTAL TRAVEL $=$ OAL $-0.200 "(50.8 \mathrm{~mm})-$ CARRIAGE LENGTH OAL = BASE LENGTH + 0.250" (6.35 mm)
BASE LENGTH = MULTIPLE OF 2.400" (60.96)

CARRIAGE SIZE

CARRIAGE SIZE				
CL	$\mathbf{- 1}$	$\mathbf{m m}$	$\mathbf{- 2}$	$\mathbf{m m}$
B	0.730	137.16	7.800	198.12
Coil	$110-59$	1.932	49.07	

I-Force Ironless

 Motor Positioner

MOTOR MODEL		$\mathbf{1 1 0 - 1}$	$\mathbf{1 1 0 - 2}$
Peak Force	N	108.5	202.5
Continuous Force	lb	24.4	45.5
Peak Power	N	24.5	45.4
Continuous Power	W	5.5	10.2

ACCURACY	STANDARD	LASER ALIGNMENT OPTION
Straightness restrained on flat surface in $[\mu \mathrm{m}]$	$\pm 0.000127 \mathrm{in} / \mathrm{in}[\pm 127 \mu \mathrm{~m} / \mathrm{m}]$	$\pm .000013 \mathrm{in} / \mathrm{in}[\pm 13 \mu \mathrm{~m} / \mathrm{m}]$
Flatness restrained on flat surface in $[\mu \mathrm{m}]$	$\pm 0.013[\pm 330]$	
Note: Straightness/Flatess specifications based on system mounted to surface of flatess $+0.0005 \mathrm{in} / \mathrm{t}$		

Note: Straightness/Flatness specifications based on system mounted to surface of flatness $\pm 0.0005 \mathrm{in} / \mathrm{ft}$

PHYSICAL		- 2	- 3
Carriage Assembly	lbs [kg]	$1.10[0,50]$	$1.50[0,68]$
Base Assembly			
T1SD Aluminum (0.250" thick))	lbs/tt [kg/m]	$2.25[3,35]$	\ldots
T1SA Aluminum ($0.375^{\prime \prime}$ thick))	$\mathrm{lbs} / \mathrm{tt}[\mathrm{kg} / \mathrm{m}]$	2.78. [4,13]
Carriage Length	in [mm]	3.40 [86,4]	5.80 [147,3]
Coil Bar Length	in [mm]	3.20 [81,3]	5.60 [142,2]
LOAD		- 1	- 2
Vertical (Fv) see note 11	lbs [kg]	$25[11,3]$	$25[11,3]$
Side (Fs) see note 11	lbs [kg]	$13[5,7]$	$13[5,7]$
Moments-Roll (Mr) see note 11	lb-ft [$\mathrm{N}-\mathrm{m}$]	11 [15]	11 [15]
Moments-Pitch (Mp) see note 11	lb-ft [$\mathrm{N}-\mathrm{m}$]	44 [60]	44 [60]
Moments-Yaw (My) see note 11	lb-ft [N-m]	44 [60]	44 [60]

NOTES

1 Total travel (in) = BASE LENGTH - 1.6 (40.64 mm) - CARRIAGE LENGTH.
2 Maximum base length is $40.8^{\prime \prime}, 1 \mathrm{~m}$
3 Aluminum base is black anodized.
4 For complete motor specifications, refer to 110 series motor data sheet.
5 Renishaw encoder, RGH24 series, available in $0.05 \mu \mathrm{~m}, 0.1 \mu \mathrm{~m}, 0.5 \mu \mathrm{~m}$, $1.0 \mu \mathrm{~m}, 5.0 \mu \mathrm{~m}$.

7 Standard cable track provided is Igus 07.20.018.
8 Specification subject to change without notice.
9 Listed specifications based on motor size and typical performance requirements. Bearing manufacturer specifications exceed listed specifications.

T1S

CARRIAGE TABLE
OAI = BASE LENGTH $+1.25 \mathrm{IN}(31.75)$
TRAVEL $=$ BASE LENGTH $-1.6-$ CARRIAGE LENGTH TRAVEL $(\mathrm{mm})=$ BASE LENGTH $-40.64-$ CARRIAGE LENGTH

CARRIAGE TABLE			
COIL SIZE	$\mathbf{- 1}$	$\mathbf{- 2}$	
CARRIAGE LENGTH	$3.4[86.4]$	$5.8[147.3]$	
A (1ST MOUNTING HOLE)	$0.224[5.7]$	$0.440[11.2]$	
B (DOWEL PIN HOLE)	$0.224[5.7]$	$0.440[11.2]$	

I-Force Ironless Motor Positioner

PERFORMANCE		LINEAR MAGNETC ENCODER5.0um1.0 um		RENSHAW ENCODER OPTIONS (Note 5)0.5 um0.1 um	
Peak Velocity	in/s [m/s]	275 [7]	100 [2.5]	120 [3]	15 [0.4]
Resolution	in [$\mu \mathrm{m}$]	0.0002 [5]	0.00004 [1.0]	$0.00002[0.5]$	0.000004 [0.1]
Repeatability	in [$\mu \mathrm{m}$]	$\pm 0.0004[\pm 10]$	± 0.0008 [2.0]	± 0.00006 [1.5]	± 0.00004 [1.0]
Accuracy - LME		30 $\mu \mathrm{m}+50 \mu \mathrm{~m} / \mathrm{m}$	$(25 \mu \mathrm{~m}+50 \mu \mathrm{~m} / \mathrm{m}$		
Accuracy - Renishaw				$\pm(5 \mu \mathrm{~m}+$	m / m)
Note: For travels less than 1 meter, accuracy should be calculated at 1 meter					
MOTOR MODEL		210-2	210-3	210-4	
Peak Force	N	255.8	375.0	494.2	
	lb	57.5	84.3	111.1	
Continuous Force	N	57.4	84.1	110.3	
	lb	12.9	18.9	24.8	
Peak Power	W	1583	2261	2940	
Continuous Power	W	79	113	147	

LOAD		- 2	- 3	- 4
Vertical (Fv) see note 11	lbs [kg]	60 [27,1]	$80[36,3]$	100 [45,3]
Side (Fs) see note 11	lbs [kg]	$40[18,1]$	$60[27,2]$	$60[27,2]$
Moments-Roll (Mr) see note 11	$\mathrm{lb}-\mathrm{ft}[\mathrm{N}-\mathrm{m}]$	40 [53]	60 [80]	60 [80]
Moments-Pitch (Mp) see note 11	$\mathrm{lb}-\mathrm{ft}[\mathrm{N}-\mathrm{m}]$	100 [134]	200 [270]	200 [270]
Moments-Yaw (My) see note 11	$\mathrm{lb}-\mathrm{ft}[\mathrm{N}-\mathrm{m}]$	100 [134]	200 [270]	200 [270]

NOTES

1 Total travel $=0 \mathrm{AL}-3.00^{\prime \prime}(76.2 \mathrm{~mm})$ - carriage length.
2 Maximum base length is $120^{\prime \prime}(3048 \mathrm{~mm})$.
3 Aluminum base is black anodized. Steel base is nickel plated.
4 For complete motor specifications, refer to 210 series motor data sheet.
5 Renishaw encoder, RGH24 series, available in $0.05 \mu \mathrm{~m}, 0.1 \mu \mathrm{~m}, 0.5 \mu \mathrm{~m}$, $1.0 \mu \mathrm{~m}, 5.0 \mu \mathrm{~m}$.
6 Cables extend past base by approximately $0.6^{\prime \prime}$ when carriage is at negative hard stop.

7 Cable Track extends $0.175^{\prime \prime}$ higher than carriage mounting surface. It is recommended to use optional Spacer Plate for custom mounting holes.
8 Standard cable track provided is Igus 07.30.018.
9 Base mounting holes are equidistant, $1.200^{\prime \prime}$ ($12.0,16.8,21.6 \ldots$...) or $2.400^{\prime \prime}(9.6,14.4,19.2,24.0 \ldots .$.$) from each end depending on base length.$
10 Specification subject to change without notice.
11 Listed specifications based on motor size and typical performance requirements. Bearing manufacturer specifications exceed listed specifications.

Dimensions shown in inches.

- Moving Carriage Assembly
- Stationary Base Assembly

TOTAL TRAVEL = OAL - 3.00" $(76.2 \mathrm{~mm})-$ CARRIAGE LENGTH
OAL = MULTIPLE OF 2.400" (60.96)

CARRIAGE SIZE						
	$\mathbf{- 2}$	$\mathbf{m m}$	$\mathbf{- 3}$	$\mathbf{m m}$	$\mathbf{- 4}$	$\mathbf{m m}$
CL	4.200	106.68	6.600	167.64	9.000	228.6
A	3.200	81.28	5.600	142.24	8.000	203.80
B	-	-	2.800	71.12	4.000	101.60
COIL	$210-2$	$210-3$	$210-4$			

I-Force Ironless Motor Positioner

T2S Specifications

PERFORMANCE		$\begin{aligned} & \text { LINEAR MAGNETIC ENCODER } \\ & 5.0 \mathrm{um} \\ & 1.0 \mathrm{um} \end{aligned}$		RENSHAW ENCODER OPTIONS (Note 5)0.5 um0.1 mm	
Peak Velocity	$\mathrm{in} / \mathrm{s}[\mathrm{m} / \mathrm{s}]$	275 [7]	100 [2.5]	120 [3]	15 [0.4]
Resolution	in [$\mu \mathrm{m}$]	0.0002 [5]	0.00004 [1.0]	0.00002 [0.5]	0.000004 [0.1]
Repeatability	in [$\mu \mathrm{m}$]	$\pm 0.0004[\pm 10]$	± 0.0008 [2.0]	$\pm 0.00006[1.5]$	± 0.00004 [1.0]
Accuracy - LME		$\pm(30 \mu \mathrm{~m}+50 \mu \mathrm{~m} / \mathrm{m}) \quad \pm(25 \mu \mathrm{~m}+50 \mu \mathrm{~m} / \mathrm{m})$			
Accuracy - Renishaw				$\pm(5 \mu \mathrm{~m}+30 \mu \mathrm{~m} / \mathrm{m})$	
Note: For travels less than 1	should be calc	at 1 meter			

MOTOR MODEL		$\mathbf{2 1 0 - 2}$	$\mathbf{2 1 0 - 3}$	$\mathbf{2 1 0 - 4}$
Peak Force	N	255.8	375.0	494.2
	lb	57.5	84.3	111.1
Continuous Force	N	57.4	84.1	110.3
Peak Power	lb	12.9	18.9	24.8
Continuous Power	W	1583	2261	2940

ACCURACY	STANDARD	LASER ALIGNMENT OPTION
Straightness restrained on flat surface in $[\mu \mathrm{m}]$	$\pm 0.000127 \mathrm{in} / \mathrm{m}[\pm 127 \mathrm{~mm} / \mathrm{m}]$	$\pm 0.0000127 \mathrm{in} / \mathrm{in}[\pm 13 \mathrm{~mm} / \mathrm{m}]$
Flatness restrained on flat surface in $[\mu \mathrm{m}]$	$\pm 0.003+.000254 \mathrm{in} / \mathrm{in}[\pm 76+254 \mu \mathrm{~m} / \mathrm{m}]$	

```
Note: For travels less than 1 meter, Flatness should be calculated at 1 meter
    Straightness/Flatness specifications based on system mounted to surface of flatness }\pm0.0005\mathrm{ in/ft
```

PHYSICAL		- 2	- 3	- 4
Carriage Assembly	lbs [kg]	2.10 [0,95]	3.10 [1,38]	3.80 [1,70]
Base Assembly			-)
T2SA Aluminum (0.375" thick)	$\mathrm{lbs} / \mathrm{tt}[\mathrm{kg} / \mathrm{m}]$	9.10 [13,5]	-	
T2SB Aluminum (0.500 " thick)	$\mathrm{lbs} / \mathrm{tt}[\mathrm{kg} / \mathrm{m}]$	9.90 [14,7]		
T2SS Steel ($0.500^{\prime \prime}$ thick)	$\mathrm{lbs} / \mathrm{tt}[\mathrm{kg} / \mathrm{m}]$	15.10 [22,5]	-	-
Carriage Length	in [mm]	4.20 [106,7]	$6.60[167,6]$	$9.00[228,6]$
Coil Bar Length	in [mm]	7.20 [182,9]	9.60 [243,8]	12.00 [304,8]

LOAD		- 2	- 3	- 4
Vertical (Fv) see note 11	lbs [kg]	40 [18,1]	$50[22,7]$	$60[27,2]$
Side (Fs) see note 11	lbs [kg]	$20[9,1]$	$30[13,6]$	$30[13,6]$
Moments-Roll (Mr) see note 11	lb -ft [$\mathrm{N}-\mathrm{m}$]	20 [27]	30 [40]	30 [40]
Moments-Pitch (Mp) see note 11	lb -ft [$\mathrm{N}-\mathrm{m}$]	50 [67]	100 [135]	100 [135]
Moments-Yaw (My) see note 11	lb -ft [$\mathrm{N}-\mathrm{m}$]	50 [67]	100 [135]	100 [135]

NOTES

1 Total travel $=0 \mathrm{AL}-3.00^{\prime \prime}(76.2 \mathrm{~mm})-$ carriage length.
2 Maximum base length is $120^{\prime \prime}(3048 \mathrm{~mm})$.
3 Aluminum base is black anodized. Steel base is nickel plated.
4 For complete motor specifications, refer to 210 series motor data sheet.
5 Renishaw encoder, RGH24 series, available in $0.05 \mu \mathrm{~m}, 0.1 \mu \mathrm{~m}, 0.5 \mu \mathrm{~m}$, $1.0 \mu \mathrm{~m}, 5.0 \mu \mathrm{~m}$.
6 Cable extends past base by approximately $0.6^{\prime \prime}$ when carriage is at negative hard stop.

7 Cable Track extends $0.175^{\prime \prime}$ higher than carriage mounting surface. It is recommended to use optional Spacer Plate for custom mounting holes.
8 Standard cable track provided is Igus 07.30 .018 .
9 Base mounting holes are equidistant, $1.200^{\prime \prime}(12.0,16.8,21.6 \ldots .$.$) or$ $2.400^{\prime \prime}(9.6,14.4,19.2,24.0 . . .$.$) from each end depending on base length.$
10 Specification subject to change without notice.
11 Listed specifications based on motor size and typical performance requirements. Bearing manufacturer specifications exceed listed specifications. ments. Bearing manufacturer specifications exceed listed specifications.

Dimensions shown in inches.

- Moving Carriage Assembly
- Stationary Base Assembly

	CARRIAGE SIZE					
	$\mathbf{- 2}$	$\mathbf{m m}$	$\mathbf{- 3}$	$\mathbf{m m}$	$\mathbf{- 4}$	$\mathbf{m m}$
CL	4.200	106.68	6.600	167.64	9.000	228.60
A	3.200	81.28	5.600	142.24	8.000	203.20
B	-	71.12	2.800	101.60	4.000	101.64
COIL	$210-2$	$210-3$	$210-4$			

ACCURACY	STANDARD	LASER ALIGNMENT OPTION
Straightness restrained on flat surface in $[\mu \mathrm{m}]$	$\pm 0.000127 \mathrm{in} / \mathrm{in}[\pm 127 \mu \mathrm{~m} / \mathrm{m}]$	$\pm .000013 \mathrm{in} / \mathrm{in}[13 \mu \mathrm{~m} / \mathrm{m}]$
Flatness restrained on flat surface in $[\mu \mathrm{m}]$	$\pm 0.003+.000254 \mathrm{in} / \mathrm{in}[\pm 76+254 \mu \mathrm{~m} / \mathrm{m}]$	
Note: For travels less than 1 meter, Flatness should be calculated at 1 meter		
Straightness/Flatness specifications based on system mounted to surface of flatness $\pm 0.0005 \mathrm{in} / \mathrm{tt}$		

PHYSICAL		- 2	- 3	- 4	- 5	- 6
Carriage Assembly	lbs [kg]	4.60 [2,1]	6.70 [3,0]	8.10 [3,7]	9.50 [4,3]	11.00 [5,0$]$
Base Assembly						
T3DA Aluminum (3.375 "thick)	$\mathrm{lbs} / \mathrm{ft}[\mathrm{kg} / \mathrm{m}]$	15.75 [23,4]		-	\cdots	-
T3DB Aluminum (0.500 "thick)	$\mathrm{lbs} / \mathrm{ft}[\mathrm{kg} / \mathrm{m}]$	16.88 [25,1]				-
T3DS Steel (0.500 "thick)	$\mathrm{lbs} / \mathrm{ft}[\mathrm{kg} / \mathrm{m}]$	25.27 [37,6]		\cdots	-
Carriage Length	in [mm]	4.20 [106,7]	$6.60[167,6]$	$9.00[228,6]$	11.40 [289,6]	13.80 [350,5]
Coil Bar Length	in [mm]	7.20 [182,9]	9.60 [243,8]	12.00 [304,8]	14.40 [365,8]	16.80 [426,7]

LOAD		- 2	- 3	- 4	- 5	- 6
Vertical (Fv) see note 11	lbs [kg]	120 [54]	150 [68]	180 [81]	210 [95]	240 [108]
Side (Fs) see note 11	lbs [kg]	80 [36]	100 [45]	100 [45]	100 [45]	100 [45]
Moments-Roll (Mr) see note 11	$\mathrm{lb}-\mathrm{ft}[\mathrm{N}-\mathrm{m}\}$	80 [107]	100 [134]	100 [134]	100 [134]	100 [134]
Moments-Pitch (Mp) see note 11	$\mathrm{lb}-\mathrm{ft}[\mathrm{N}-\mathrm{m}\}$	160 [214]	300 [402]	300 [402]	300 [402]	300 [402]
Moments-Yaw (My) see note 11	$\mathrm{lb}-\mathrm{ft}[\mathrm{N}-\mathrm{m}\}$	160 [214]	300 [402]	300 [402]	300 [402]	300 [402]

NOTES

1 Total travel $=0 \mathrm{AL}-3.00^{\prime \prime}(76.2 \mathrm{~mm})-$ carriage length.
2 Maximum base length is $120^{\prime \prime}(3048 \mathrm{~mm})$.
3 Aluminum base is black anodized. Steel base is nickel plated.
4 For complete motor specifications, refer to 310 series motor data sheet.
5 Renishaw encoder, RGH24 series, available in $0.05 .0 \mu \mathrm{~m}$. $0.1 \mu \mathrm{~m}, 0.5 \mu \mathrm{~m}, 1.0 \mu \mathrm{~m}, 5.0 \mu \mathrm{~m}$.
6 Cable extends past base by approximately $0.6^{\prime \prime}$ when carriage is at negative hard stop.

7 Cable Track extends 0.175 "higher than carriage mounting surface. It is recommended to use optional Spacer Plate for custom mounting holes.
8 Standard cable track provided is Igus 07.30.018.
9 Base mounting holes are equidistant, $1.200^{\prime \prime}(12.0,16.8,21.6 . .$.$) or$ $2.400^{\prime \prime}(9.6,14.4,19.2,24.0 . .$.$) from each end depending on base length.$
10 Specification subject to change without notice.
11 Listed specifications based on motor size and typical performance requirements Bearing manufacturer specifications exceed listed specifications.

Dimensions shown in inches.

- Moving Carriage Assembly
- Stationary Base Assembly

	CARRIAGE SIZE									
	$\mathbf{- 2}$	$\mathbf{m m}$	$\mathbf{- 3}$	$\mathbf{m m}$	$\mathbf{- 4}$	$\mathbf{m m}$	$\mathbf{- 5}$	$\mathbf{m m}$	$\mathbf{- 6}$	$\mathbf{m m}$
CL	4.200	$\mathbf{1 0 6 . 6 8}$	6.600	167.64	9.000	228.60	11.400	289.56	13.800	350.52
A	3.200	81.28	5.650	142.24	8.000	203.20	10.400	264.16	12.800	325.12
B	-		2.800	71.12	4.000	101.60	5.200	132.08	6.400	162.56
COIL	$310-2$		$310-3$	$310-4$	$310-5$	$310-6$				

I-Force Ironless Motor Positioner

PERFORMANCE		LINEAR MAGNETIC ENCODER5.0 $1.0 .1 \mu \mathrm{~m}$		$\begin{aligned} & \text { RENISHAW ENC } \\ & 0.5 \mu \mathrm{~m} \end{aligned}$	$\begin{aligned} & \text { R OPTIONS (Note 5) } \\ & 0.1 \mathrm{~mm} \end{aligned}$
Peak Velocity	$\mathrm{in} / \mathrm{s}[\mathrm{m} / \mathrm{s}]$	275 [7]	100 [2.5]	120 [3]	15 [0.4]
Resolution	in [$\mu \mathrm{m}$]	0.0002 [5]	0.00004 [1.0]	0.00002 [0.5]	0.000004 [0.1]
Repeatability	in [$\mu \mathrm{m}$]	$\pm 0.0004[\pm 10]$	± 0.0008 [2.0]	± 0.00006 [1.5]	± 0.00004 [1.0]
Accuracy - LME		$\pm(30 \mu \mathrm{~m}+50 \mu \mathrm{~m} / \mathrm{m}) \quad \pm(25 \mu \mathrm{~m}+50 \mu \mathrm{~m} / \mathrm{m})$			
Accuracy - Renishaw Note: For travels less than 1 meter, accuracy should be cal		1 meter $\quad \pm(5 \mu \mathrm{~m}+30 \mu \mathrm{~m} / \mathrm{m})$			

MOTOR MODEL		$\mathbf{3 1 0 - 2}$	$\mathbf{3 1 0 - 3}$	$\mathbf{3 1 0 - 4}$	$\mathbf{3 1 0 - 5}$	$\mathbf{3 1 0 - 6}$
Peak Force	N	409.3	600.0	790.0	980.0	1170.0 .1
	Ib	92.0	135.1	177.2	220.3	263.2
Continuous Force	N	91.6	133.9	176.2	219.3	262.0
	Ib	20.6	30.1	39.6	49.3	589
Peak Power	W	1885	2693	3500	4308	5116
Continuous Power	W	4	135	179	215	256

ACCURACY	STANDARD	LASER ALIGNMENT OPTION
Straightness restrained on flat surface in $[\mu \mathrm{m}]$	$\pm 0.000127[\pm 127 \mu \mathrm{~m} / \mathrm{m}]$	$\pm .00013 \mathrm{in} / \mathrm{in}[\pm 13 \mu \mathrm{~m} / \mathrm{m}]$
Flatness restrained on flat surface in $[\mu \mathrm{m}]$	$\pm 0.003+.00254 \mathrm{in} / \mathrm{in}[\pm 76+254 \mu \mathrm{~m} / \mathrm{m}]$	

Note: For travels less than 1 meter, Flatness should be calculated at 1 meter
Straightness/Flatness specifications based on system mounted to surface of flatness ± 0.0005 in/ft

PHYSICAL		- 2	- 3	- 4	- 5	- 6
Carriage Assembly	\|bs [kg]	3.00 [1,4]	4.40 [2,0]	$5.50[2,5]$	6.40 [2,9]	$7.40[3,3]$
Base Assembly						
T3SA Aluminum (3.375 "thick)	lbs/tt [kg/m]	13.30 [19,8]	
T3SB Aluminum (0.500 "thick)	$\mathrm{lbs} / \mathrm{tt}[\mathrm{kg} / \mathrm{m}]$	14.25 [21,2]	\ldots
T3SS Steel (0.500 "thick)	lbs/tt [kg/m]	21.24 [31,6]	-	\cdots
Carriage Length	in [mm]	4.20 [106,7]	6.60 [167,6]	9.00 [228,6]	11.40 [289,6]	13.80 [350,5]
Coil Bar Length	in [mm]	7.20 [182,9]	9.60 [243,8]	12.00 [304,8]	14.40 [365,8]	16.80 [426,7]

LOAD		- 2	- 3	4	5	6
Vertical (Fv) see note 11	lbs [kg]	80 [36]	100 [45]	120 [54]	140 [63]	160 [72]
Side (Fs) see note 11	lbs [kg]	30 [13]	50 [22]	50 [22]	50 [22]	50 [22]
Moments-Roll (Mr) see note 11	lb-ft [$\mathrm{N}-\mathrm{m}$ \}	35 [47]	50 [67]	50 [67]	50 [67]	50 [67]
Moments-Pitch (Mp) see note 11	lb-ft [$\mathrm{N}-\mathrm{m}$ \}	75 [100]	150 [201]	150 [201]	150 [201]	150 [201]
Moments-Yaw (My) see note 11	lb-ft [$\mathrm{N}-\mathrm{m}$ \}	75 [100]	150 [201]	150 [201]	150 [201]	150 [201]

NOTES

1 Total travel $=0 \mathrm{AL}-3.00^{\prime \prime}(76.2 \mathrm{~mm})-$ carriage length.
2 Maximum base length is $120^{\prime \prime}(3048 \mathrm{~mm})$.
3 Aluminum base is black anodized. Steel base is nickel plated.
4 For complete motor specifications, refer to 310 series motor data sheet.
5 Renishaw encoder, RGH24 series, available in $0.05 .0 \mu \mathrm{~m}$. $0.1 \mu \mathrm{~m}, 0.5 \mu \mathrm{~m}, 1.0 \mu \mathrm{~m}, 5.0 \mu \mathrm{~m}$.
6 Cable extends past base by approximately $0.6^{\prime \prime}$ when carriage is at negative hard stop.

7 Cable Track extends $0.175^{\prime \prime}$ higher than carriage mounting surface. It is recommended to use optional Spacer Plate for custom mounting holes.
8 Standard cable track provided is Igus 07.30.018.
9 Base mounting holes are equidistant, 1.200 " $(12.0,16.8,21.6 . .$.$) or$ $2.400^{\prime \prime}(9.6,14.4,19.2,24.0 . .$.$) from each end depending on base length.$

10 Specification subject to change without notice.
11 Listed specifications based on motor size and typical performance requirements Bearing manufacturer specifications exceed listed specifications.

Dimensions shown in inches.

- Moving Carriage Assembly
- Stationary Base Assembly

T4D Specifications

PERFORMANCE		LINEAR MA 5.0um	IC ENCODER $1.0 .1 \mu \mathrm{~m}$	$\begin{aligned} & \text { RENSHAW ENC(} \\ & 0.5 \mu \mathrm{~m} \end{aligned}$	OPTIONS (Note 5) 0.1 um
Peak Velocity	$\mathrm{in} / \mathrm{s}[\mathrm{m} / \mathrm{s}]$	275 [7]	100 [2.5]	120 [3]	15 [0.4]
Resolution	in [$\mu \mathrm{m}$]	0.0002 [5]	0.00004 [1.0]	0.00002 [0.5]	0.000004 [0.1]
Repeatability	in $[\mu \mathrm{m}]$	$\pm 0.0004[\pm 10]$	± 0.0008 [2.0]	± 0.00006 [1.5]	± 0.00004 [1.0]
Accuracy - LME	$\pm(30 \mu \mathrm{~m}+50 \mu \mathrm{~m} / \mathrm{m}) \pm(25 \mu \mathrm{~m}+50 \mu \mathrm{~m} / \mathrm{m})$				

Accuracy - Renishaw
$\pm(5 \mu \mathrm{~m}+30 \mu \mathrm{~m} / \mathrm{m})$
Note: For travels less than 1 meter, accuracy should be calculated at 1 meter

MOTOR MODEL		410-2	410-3	410-4	410-6	410-8
Peak Force	N	1041.4	1523.6	2006.3	2967.2	3928.1
	lb	234.1	342.5	451.0	667.0	883.0
Continuous Force	N	233.1	340.8	448.9	663.7	878.6
	lb	52.4	76.6	100.9	149.2	197.5
Peak Power	W	2835	4050	5265	7695	10125
Continuous Power	W	142	203	263	385	506

ACCURACY	STANDARD	LASER ALIGNMENT OPTION
Straightness restrained on flat surface in $[\mu \mathrm{m}]$	$\pm 0.000127 \mathrm{in} / \mathrm{in}[\pm 127 \mu \mathrm{~m} / \mathrm{m}]$	$\pm .000013 \mathrm{in} / \mathrm{in}[\pm 13 \mu \mathrm{~m} / \mathrm{m}]$
Flatness restrained on flat surface in $[\mu \mathrm{m}]$	$\pm .003+.000254 \mathrm{in} / \mathrm{in}[\pm 76+254 \mu \mathrm{~m} / \mathrm{m}]$	

Note: For travels less than 1 meter, Flatness should be calculated at 1 meter
Straightness/Flatness specifications based on system mounted to surface of flatness ± 0.0005 in/tt

PHYSICAL		- 2	- 3	- 4	- 6	- 8
Carriage Assembly						
T4DB Aluminum	lbs [kg]	$9.0[4,1]$	14.9 [6,8]	18.1 [8,2]	24.1 [10,9]	30.2 [13,7]
T4DS Steel	lbs [kg]	$13.29[6,0]$	22.20 [10,1]	28.46 [12,9]	40.51 [18,4]	52.59 [23,9]
Base Assembly						
T4DB Aluminum	$\mathrm{lbs} / \mathrm{ft}[\mathrm{kg} / \mathrm{m}]$	29.4 [43,8]	.	-	\cdots
T4DS Steel	$\mathrm{lbs} / \mathrm{ft}[\mathrm{kg} / \mathrm{m}]$	39.3 [58,5$]$	\cdots
Carriage Length	in [mm]	4.80 [121,9]	8.15 [207,0]	11.50 [292,1]	18.20 [462,3]	24.90 [632,5]
Coil Bar Length	in [mm]	10.00 [254]	13.36 [339]	16.72 [424]	23.44 [595]	30.16 [766]

LOAD		- 2	- 3	- 4	- 6	- 8
Vertical (Fv) see note 11	lbs [kg]	200 [90]	250 [113]	300[136]	400 [181]	400 [181]
Side (Fs) see note 11	lbs [kg]	150 [68]	150 [68]	150 [68]	150 [68]	150 [68]
Moments-Roll (Mr) see note 11	$\mathrm{lb}-\mathrm{ft}[\mathrm{N}-\mathrm{m}\}$	100 [133]	150 [200]	150 [200]	150 [200]	150 [200]
Moments-Pitch (Mp) see note 11	$\mathrm{lb}-\mathrm{ft}[\mathrm{N}-\mathrm{m}\}$	200 [266]	400 [532]	400 [532]	400 [532]	400 [532]
Moments-Yaw (My) see note 11	$\mathrm{lb}-\mathrm{ft}[\mathrm{N}-\mathrm{m}\}$	200 [266]	400 [532]	400 [532]	400 [532]	400 [532]

NOTES

1 Total travel = OAL - 5.50" (139.7 mm) - carriage length.
2 Maximum base length is $120^{\prime \prime}$ (3048)
3 Aluminum base is black anodized. Steel base is nickel plated.
4 For complete motor specifications, refer to 410 series motor data sheet.
5 Renishaw encoder, RGH24 series, available in $0.05 .0 \mu \mathrm{~m}$. $0.1 \mu \mathrm{~m}, 0.5 \mu \mathrm{~m}, 1.0 \mu \mathrm{~m}, 5.0 \mu \mathrm{~m}$.
6 Cable extends past base by approximately $0.6^{\prime \prime}$ when carriage is at negative hard stop.

7 Cable Track extends 0.175 " higher than carriage mounting surface. It is recommended to use optional Spacer Plate for custom mounting holes.
8 Standard cable track provided is Igus 07.30 .028 .
9 Base mounting holes are equidistant, $1.680^{\prime \prime}(16.80,23.52 \ldots .$.$) or$ $3.360^{\prime \prime}(20.16,26.88 \ldots .$.$) from each end depending on base length.$
10 Specification subject to change without notice.
11 Listed specifications based on motor size and typical performance requirements Bearing manufacturer specifications exceed listed specifications.

Dimensions shown in inches.

- Moving Carriage Assembly
- Stationary Base Assembly

0.281 THRU

C'BORE 0.406×0.260 DP
TOTAL TRAVEL = OAL - 5.50" (139.7) - CARRIAGE LENGTH
OAL = MULTIPLE OF 3.360" (85.34)

I-Force Ironless Motor Positioner

T4S Specifications

PERFORMANCE		$\begin{aligned} & \text { LINEAR MAGNETIC ENCODER } \\ & \text { 5.0 } 1.0 \mathrm{um} \end{aligned}$		RENISHAW ENCODER OPTIONS (Note 5)0.1 l0.1 um	
Peak Velocity	$\mathrm{in} / \mathrm{s}[\mathrm{m} / \mathrm{s}]$	275 [7]	100 [2.5]	120 [3]	15 [0.4]
Resolution	in [$\mu \mathrm{m}$]	0.0002 [5]	0.00004 [1.0]	0.00002 [0.5]	0.000004 [0.1]
Repeatability	in [$\mu \mathrm{m}$]	$\pm 0.0004[\pm 10]$	± 0.0008 [2.0]	$\pm 0.00006[1.5]$	± 0.00004 [1.0]
Accuracy - LME	$\pm(30 \mu \mathrm{~m}+50 \mu \mathrm{~m} / \mathrm{m}) \pm(25 \mu \mathrm{~m}+50 \mu \mathrm{~m} / \mathrm{m})$				

Accuracy - Renishaw
$\pm(5 \mu \mathrm{~m}+30 \mu \mathrm{~m} / \mathrm{m})$
Note: For travels less than 1 meter, accuracy should be calculated at 1 meter

MOTOR MODEL		410-2	410-3	410-4	410-6	410-8
Peak Force	N	1041.4	1523.6	2006.3	2967.2	3928.1
	lb	234.1	342.5	451.0	667.0	883.0
Continuous Force	N	233.1	340.8	448.9	663.7	878.6
	lb	52.4	76.6	100.9	149.2	197.5
Peak Power	W	2835	4050	5265	7695	10125
Continuous Power	W	142	203	263	385	506

ACCURACY	STANDARD	LASER ALIGNMENT OPTION
Straightness restrained on flat surface in $[\mu \mathrm{m}]$	$\pm 0.000125 \mathrm{in} / \mathrm{in}[\pm 127 \mu \mathrm{~m} / \mathrm{m}]$	$\pm 0.000013 \mathrm{in} / \mathrm{in}[\pm 13 \mu \mathrm{~m} / \mathrm{m}]$
Flatness restrained on flat surface in $[\mu \mathrm{m}]$	$\pm 0.003+.000254 \mathrm{in} / \mathrm{in}[\pm 76+254 \mu \mathrm{~m} / \mathrm{m}]$	

Note: For travels less than 1 meter, Flatness should be calculated at 1 meter
Straightness/Flatness specifications based on system mounted to surface of flatness $\pm 0.0005 \mathrm{in} / \mathrm{ft}$

PHYSICAL		- 2	- 3	- 4	- 6	- 8
Carriage Assembly						
T4SB Aluminum	lbs [kg]	$6.5[3,0]$	10.3 [4,7]	13.0 [5,9]	17.8 [8,1]	22.7 [10,3]
T4SS Steel	lbs [kg]	8.78 [4,0]	14.22 [6,5]	18.47 [8,4]	26.49 [12,0]	34.54 [15,7]
Base Assembly						
T4SB Aluminum	lbs/ft [kg/m]	26.7 [39,8])	-	-
T4SS Steel	$\mathrm{lbs} / \mathrm{ft}[\mathrm{kg} / \mathrm{m}]$	34.9 [52,0])	. ${ }^{\text {a }}$ -
Carriage Length	in [mm]	4.80 [121,9]	8.15 [207,0]	11.50 [292,1]	18.20 [462,3]	24.90 [632,5]
Coil Bar Length	in [mm]	10.00 [254]	13.36 [339]	16.72 [424]	23.44 [595]	30.16 [766]

LOAD		$\mathbf{- 2}$	$\mathbf{- 3}$	$\mathbf{- 4}$	$\mathbf{- 6}$	$\mathbf{- 8}$
Vertical (Fv)	see note 11	$\mathrm{lbs}[\mathrm{kg}]$	$150[68]$	$175[79]$	$175[79]$	$200[90]$
Side (Fs)	see note 11	$\mathrm{lbs}[\mathrm{kg}]$	$75[34]$	$75[34]$	$75[34]$	$75[34]$
Moments-Roll (Mr) see note 11	$\mathrm{lb}-\mathrm{ft}[\mathrm{N}-\mathrm{m}\}$	$50[66]$	$100[133]$	$100[133]$	$100[133]$	$100[133]$
Moments-Pitch $(M \mathrm{Mp})$ see note 11	$\mathrm{lb}-\mathrm{ft}[\mathrm{N}-\mathrm{m}\}$	$100[133]$	$200[266]$	$200[266]$	$200[266]$	$200[266]$
Moments-Yaw (My) see note 11	$\mathrm{lb-ft}[\mathrm{~N}-\mathrm{m}\}$	$100[133]$	$200[266]$	$200[266]$	$200[266]$	$200[266]$

NOTES

[^0]7 Cable Track extends $0.175^{\prime \prime}$ higher than carriage mounting surface. It is recommended to use optional Spacer Plate for custom mounting holes.

8 Standard cable track provided is Igus 07.30 .028 .
9 Base mounting holes are equidistant, 1.680 " $(16.80,23.52 \ldots .$.$) or$ $3.360^{\prime \prime}(20.16,26.88 \ldots .$.$) from each end depending on base length.$
10 Specification subject to change without notice.
11 Listed specifications based on motor size and typical performance require Bearing manufacturer specifications exceed listed specifications.

Dimensions shown in inches.

Moving Carriage Assembly
Stationary Base Assembly
-LIMIT
(~0.1 FROM HARD STOP) (2.54)

HOME
(~0.7 FROM HARD STOP) (17.78)

POSITIVE TRAVEL
DIRECTION DIRECTION

CARRIAGE LENGTH
-2 4.800 (121.92)
$\begin{array}{lll}-3 & 8.150 & (207.01)\end{array}$
-4 $\quad 11.500$ (292.10)
-6 18.200 (462.28)
-8 24.900 (632.46)

SHOCK
ABSORBING BUMPERS
2.750
(69.85)

TYPICAL

+ LIMIT
(2.1 FROM HARD STOP) (2.54)
TOTAL TRAVEL = OAL - 5.50" (139.7) - CARRIAGE LENGTH
OAL = MULTIPLE OF 3.360" (985.34)

	CARRIAGE SIZE									
	-2	mm	-3	mm	-4	mm	-6	mm	-8	mm
CL	4.800	121.92	8.150	207.01	11.500	292.10	18.200	462.28	24.900	632.46
A	3.800	96.52	7.150	181.61	10.500	266.70	17.200	436.88	23.900	607.66
B	-	-	3.575	90.805	5.250	133.35	8.600	218.44	11.950	303.53
COIL	41				410	4				

Order Example:

Cable length

Cable Length
A = 1 Meter Flying Leads
B $=3$ Meter Flying Leads
C = 7.5 Meter Flying Leads
L = 3 Extension Cables
(with Connector Box)
M = 7.5 Extension Cables
(with Connector Box)
Z = Connector Box ONLY (no extension cables)
*Flying leads - cable
measured from last cable carrier link
*Extension Cables - cable
measured from
connection box at
end of base

Encoder

$A=L M E, 1 u m$
$B=L M E$, $5 u m$
Q = Renishaw, 5 um
$\mathrm{L}=$ Renishaw, 1 um
$\mathrm{M}=$ Renishaw, 0.5 m
$\mathbf{P}=$ Renishaw, 0.1 um
$R=$ Renishaw, $1 \vee p-p$ sine/cosine
$X=$ No encoder

Order Example:

[^1]Order Example:

B = 1/2"Al

Length of Base

XXX = Length of base In inches
Max.: 118"
Min.: 9.6"
Increment: 2.4"

* Truncate base length in part number. Example: for a 16.8 inch base, "XXX" equal "016"
Base Length $=$ Travel (increments of $2.4^{\prime \prime}$ [60.96 mm$]$) $+3.0^{\prime \prime}[76.2 \mathrm{~mm}]+$ carriage length

Coil Size

2 = 2 pole T3S 5.0" $[127 \mathrm{~mm}]$, T3D 4.2" [106.68]
3 = 3 pole $6.6^{\prime \prime}[167.64 \mathrm{~mm}$]
$4=4$ pole $9.0^{\prime \prime}[228.60 \mathrm{~mm}]$
5 = 5 pole $11.4^{\prime \prime}[289.56 \mathrm{~mm}$]
6 = 6 pole $13.3^{\prime \prime}[350.62 \mathrm{~mm}]$

Encoder

$A=L M E, 1 u m$
$B=L M E$, $5 u m$
$\mathbf{Q}=$ Renishaw, $5 u m$
$\mathrm{L}=$ Renishaw, 1 um
$\mathrm{M}=$ Renishaw, 0.5 m
$\mathbf{P}=$ Renishaw, 0.1 um
$\mathbf{R}=$ Renishaw, 1 V p-p sine/cosine
X = No encoder

Cable track
 $0=$ None 3 = Std.

Connector

Cable Connectorization
A = Aries
B = Flying Leads
C = Compax3
G = Gemini
$\mathbf{V}=\mathrm{ViX}$
Z = no cables
*Connectorized cables only available with Connector Box

Cable length

Cable Length
A = 1 Meter Flying Leads
B = 3 Meter Flying Leads
C = 7.5 Meter Flying Leads
L = 3 Extension Cables (with Connector Box)
M = 7.5 Extension Cables (with Connector Box)
Z = Connector Box ONLY (no extension cables)
*Flying leads - cable measured from last cable carrier link
*Extension Cables - cable measured from connection box at end of base
*7.5 Meter Flying Lead Cables available on: All bases with LME encoder All bases with Renishaw encoder under $86^{\prime \prime}$ For bases with Renishaw encoder over 86 "the cable length (CL) will be $C L=10 M-$ (base length in meters +0.3 M)

Order Example:

Cooling
 N no cooling

Encoder

A = LME 1 um
$B=$ LME 5 um
5 um
M Rensaw 0.5
P Renishaw 0.1 mm
R = Renishaw IV D-p
sine/cosine
= No Encoder

Connector
Cable Connectorization
A = Aries
$\mathbf{B}=$ Flying Leads
C = Compax3
G = Gemini
V
*Connectorize cables only available with Connector Box

Cable length

A = 1 Meter Flying Leads
B = 3 Meter Flying Leads
L = 3 Extension Cables
(with Connector Box)
= 7.5 Extension Cables (with Connector Box)
= Connector Box ONLY
*Flying leads - cable measured last cable carrier link *Extension Cables - cable at end of base
*7.5 Meter Flying Lead Cables valiable on:
All bases with LME encoder Al bases w 1e " " encoder under 86
 encoder over 86 the $\mathrm{CL}=10 \mathrm{M}-$ (base length in meters +0.3 M)

Parker Hannifin

The global leader in motion and control technologies and systems

Global Partnerships Global Support

Parker is committed to helping make our customers more productive and more profitable through our global offering of motion and control products and systems. In an increasingly competitive global economy, we seek to develop customer relationships as technology partnerships. Working closely with our customers, we can ensure the best selection of technologies to suit the needs of our customers' applications.

Electromechanical Technologies for High Dynamic Performance and Precision Motion

Parker electromechanical technologies form an important part of Parker's global motion and control offering. Electromechanical systems combine high performance speed and position control with the flexibility to adapt the systems to the rapidly changing needs of the industries we serve.

aerospace climate control electromechanical filtration fluid \& gas handling hydraulics pneumatics process control sealing \& shielding

Parker Hannifin Corporation
With annual sales exceeding $\$ 12$ billion, Parker Hannifin is the world's leading diversified manufacturer of motion and control technologies and systems, providing precision-engineered solutions for a wide variety of commercial, mobile, industrial and aerospace markets. The company employs more than 62,000 people in 48 countries
around the world. Parker has increased its annual dividends paid to shareholders for 52 consecutive years, among the top five longest-running dividendincrease records in the S\&P 500 index. For more information, visit the company's web site at www.parker.com, or its investor information site at www.phstock.com.

Electromechanical Automation

Global products with local manufacturing and support

Global Product Design

Parker Hannifin has more than 40 years' experience in the design and manufacturing of drives, controls, motors and mechanical products. With dedicated global product development teams, Parker draws on industry-leading technological leadership and experience from engineering teams in Europe, North America and Asia.

Local Application Expertise

Parker has local engineering resources committed to adapting and applying our current products and technologies to best fit our customers' needs. Parker's engineering resources also extend to the development and manufacture of complete systems for continuous process and motion control applications.

Manufacturing to Meet Our Customers' Needs

Parker is committed to meeting the increasing service demands that our customers require to succeed in the global industrial market. Parker's manufacturing teams seek continuous improvement through the implementation of lean manufacturing methods throughout the process. We measure ourselves on meeting our customers' expectations of quality and delivery, not just our own. In order to meet these expectations, Parker operates and continues to invest in our manufacturing facilities in Europe, North America and Asia. This allows us to minimize transportation time and cost and to be able to respond more quickly to customer needs.

Worldwide Electromechanical Automation Manufacturing Locations

Europe

Littlehampton, United Kingdom Dijon, France
Offenburg, Germany
Milan, Italy

Asia

Shanghai, China
Chennai, India
North America
Charlotte, North Carolina
Rohnert Park, California
Irwin, Pennsylvania
Wadsworth, Ohio
Port Washington, New York
New Ulm, Minnesota

Offenburg, Germany

Littlehampton, UK

Local Manufacturing and Support in Europe

Parker provides sales assistance and local technical support through a group of dedicated sales teams and a network of authorized technical
distributors throughout Europe. For contact information, please refer to the Sales Offices on the back cover of this document or visit www.parker.com.

Milan, Italy

Dijon, France

Solutions to Improve Productivity, Increase Flexibility and Save Energy

Process Productivity and Reliability

Parker brings together the technology and experience required for continuous process applications across many industries. AC and DC variable speed drive products combined with application-specific function block-based configuration software ensure precise speed control and reliable performance. Parker combines more than 30 years of application experience with a global sales and support network that help you increase your machine availability.

Converting machinery

Folding, gluing, stitching and collating	\checkmark	\checkmark		\checkmark
Coating, laminating and foil stamping	\checkmark	\checkmark	\checkmark	\checkmark
Slitting, cutting and rewinding	\checkmark	\checkmark	\checkmark	\checkmark

Plastics processing machinery

Plastic extrusion	\checkmark		\checkmark	
Injection moulding	\checkmark		\checkmark	\checkmark
Thermal forming	\checkmark		\checkmark	\checkmark

Wire and cable

Wire and cable manufacturing	\checkmark	\checkmark		\checkmark
Winding/unwinding	\checkmark	\checkmark	\checkmark	
Extrusion for wire and cable	\checkmark	\checkmark	\checkmark	

Printing Machinery

Web/sheetfed offset	\checkmark		\checkmark	\checkmark
Flexo printing	\checkmark		\checkmark	\checkmark
Gravure printing	\checkmark		\checkmark	\checkmark
Shaftless printing	\checkmark		\checkmark	\checkmark

Other industries

| Paper machinery | \checkmark | | \checkmark | |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Sugar processing | \checkmark | \checkmark | | |
| Steel production | \checkmark | \checkmark | \checkmark | |
| Construction materials | \checkmark | \checkmark | | |
| Automotive test rigs | \checkmark | \checkmark | \checkmark | |

Energy Efficiency and Clean Power

Parker has developed the technology to maximize the efficient use of energy in industrial, mobile and infrastructure environments.
Hybrid Vehicle Technology
Parker has adapted its electric drive technologies for use in hybrid electric vehicles, including utility vehicles and passenger vehicles. Examples include inverters and motor drives, as well as electric drive motors.

Energy Savings for Pumps, Fans and Compressors

Parker has the drive technology to help you make significant energy savings in the operation of pumps, fans and compressors in both industrial and infrastructure applications, including:

- Commercial refrigeration
- Water and wastewater treatment
- Building automation
- Industrial processes
- Hydraulic systems

Power Generation and Conversion

Using proven inverter technology, Parker has developed numerous solutions for the conversion of energy for commercial use from a variety of sources, including wind, wave and energy storage devices.

Motion Control Systems for Total Production Flexibility

Parker's electromechanical automation customers enjoy total production flexibility in their general and precision motion control applications. Complete packaged linear positioning systems, coupled to servo and stepper drives and controls, enable our customers to develop a complete motion solution with one partner. Parker provides the products for a wide range of motion needs- power, speed, travel, forcewith easy to use controls designed to work on multiple control and communication platforms. Additionally, Parker's products can be easily customized to suit specific applications.

Assembly machinery			$\stackrel{\mathbb{B}}{\stackrel{\otimes}{\partial}}$	$\begin{aligned} & \infty \\ & \hline \text { O } \\ & 0.0 \\ & 0 \end{aligned}$	$\overline{\text { i }}$
Pick and place	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Lifting	\checkmark	\checkmark	\checkmark	\checkmark	
Transfer machinery	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

Automotive assembly

Resistance welding	\checkmark	\checkmark	\checkmark	\checkmark	
Painting applications	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Transfer machinery	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

Packaging machinery

Primary, secondary, tertiary	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Handling machinery	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

Food processing machinery

Processing machinery	\checkmark	\checkmark	\checkmark	\checkmark	
Packaging machinery	\checkmark	\checkmark	\checkmark	\checkmark	
Handling machinery	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

Material handling systems

Transfer systems	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Pick and place systems	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

Metal forming machinery

Presses	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Tube bending	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Handling applications	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

Machine tools

Spindles	\checkmark	\checkmark
Ancillary axes	\checkmark	\checkmark

Semiconductor machinery

Front end processes	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Inspection machinery	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Packaging machinery	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Lithography	\checkmark	\checkmark	\checkmark	\checkmark	

Medical devices

Device manufacturing	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Product packaging and dispensing	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Scanning equipment	\checkmark	\checkmark	\checkmark		
Pumps and analyzers		\checkmark	\checkmark		

Entertainment

Theatre and studio automation
Simulation and amusement rides

Complete Range of Solutions

Value Added Services

In addition to providing products and systems, Parker also provides a number of value added services to our customers:

- Programming and commissioning services
- Power quality and energy surveys
- 24-hour support and service
- Product repairs
- Product training

Customization

Many automation applications cannot be solved with off the shelf products. Parker's products are designed to be versatile as well as easy to configure for the majority of industrial and process applications. Some customers require solutions that can't be found in a catalogue, and Parker has the resources and expertise available to provide customized solutions:

- Custom motor designs
- Customized mechanical positioning systems
- Customized control functionality
- Customized communication solutions

System Solutions

Parker offers system design and manufacturing in two main categories:

Drive Systems

Complete AC and DC drive systems across a wide power range, from less than 1 kW to more than 1 MW . Systems typically include electrical enclosure, ancillary electronic equipment and full documentation. Commissioning and support services are standard.

Mechanical Systems

Parker has more than 20 years of experience in providing a variety of multiple axis mechanical positioning systems, complete with motors, drives and controls. Typical applications include material transfer and pick and place gantry systems. Additionally, Parker designs and builds custom precision positioning systems, integrating precision bearing, feedback and drive systems, including Parker's range of linear servo motors. Each system ships complete with motors, drives and controls, and can include the programming and commissioning.

Parker Worldwide

AE - UAE, Dubai
Tel: +97148127100 parker.me@parker.com
AR - Argentina, Buenos Aires Tel: +54 3327444129

AT - Austria, Wiener Neustadt Tel: +43 (0)2622 23501-0 parker.austria@parker.com
AT - Eastern Europe,
Wiener Neustadt
Tel: +43 (0)2622 23501900 parker.easteurope@parker.com

AU - Australia, Castle Hill
Tel: +61 (0)2-9634 7777
AZ - Azerbaijan, Baku
Tel: +994 502233458 parker.azerbaijan@parker.com
BE/LU - Belgium, Nivelles Tel: +32 (0)67 280900 parker.belgium@parker.com
BR - Brazil, Cachoeirinha RS
Tel: +55 5134709144
BY - Belarus, Minsk
Tel: +375 172099399 parker.belarus@parker.com
CA - Canada, Milton, Ontario Tel: +1 9056933000
CH - Switzerland, Etoy
Tel: +41 (0) 218210230 parker.switzerland@parker.com
CL - Chile, Santiago
Tel: +56 26231216
CN - China, Shanghai
Tel: +86 2150312525
CZ - Czech Republic, Klecany Tel: +420 284083111 parker.czechrepublic@parker.com

DE - Germany, Kaarst
Tel: +49 (0)21314016 0 parker.germany@parker.com
DK - Denmark, Ballerup Tel: +4543560400 parker.denmark@parker.com
ES - Spain, Madrid
Tel: +34 902330001 parker.spain@parker.com
FI - Finland, Vantaa
Tel: +358 (0)20 7532500 parker.finland@parker.com

FR - France, Contamine s/Arve Tel: +33 (0)4 50258025 parker.france@parker.com
GR - Greece, Athens
Tel: +30 2109336450 parker.greece@parker.com

HK - Hong Kong
Tel: +852 24288008
HU - Hungary, Budapest
Tel: +36 12204155 parker.hungary@parker.com
IE - Ireland, Dublin
Tel: +353 (0)1 4666370
parker.ireland@parker.com
IN - India, Mumbai
Tel: +91 226513 7081-85
IT - Italy, Corsico (MI)
Tel: +39 02451921
parker.italy@parker.com
JP - Japan, Tokyo
Tel: +(81) 364083901
KR - South Korea, Seoul
Tel: +82 25590400
KZ - Kazakhstan, Almaty
Tel: +7 7272505800 parker.easteurope@parker.com
LV - Latvia, Riga
Tel: +37167452601 parker.latvia@parker.com
MX - Mexico, Apodaca
Tel: +52 8181566000
MY - Malaysia, Shah Alam
Tel: +60 378490800
NL - The Netherlands, Oldenzaal
Tel: +31 (0)541 585000
parker.n@ @arker.com
NO - Norway, Ski
Tel: +47 64911000 parker.norway@parker.com
NZ - New Zealand, Mt Wellington Tel: +64 95741744
PL - Poland, Warsaw
Tel: +48 (0)22 5732400 parker.poland@parker.com
PT - Portugal, Leca da Palmeira
Tel: +351 229997360
parker.portugal@parker.com

RO - Romania, Bucharest
Tel: +40 212521382
parker.romania@parker.com
RU - Russia, Moscow
Tel: +7 495 645-2156 parker.russia@parker.com

SE - Sweden, Spånga
Tel: +46 (0)8 59795000 parker.sweden@parker.com

SG - Singapore

Tel: +65 68876300
SK - Slovakia, Banská Bystrica
Tel: +421 484162252
parker.slovakia@parker.com
SL - Slovenia, Novo Mesto
Tel: +38673376650
parker.slovenia@parker.com
TH - Thailand, Bangkok
Tel: +662 7178140
TR - Turkey, Istanbul
Tel: +90 2164997081 parker.turkey@parker.com

TW - Taiwan, Taipei
Tel: +886 222988987
UA - Ukraine, Kiev
Tel +380 444942731
parker.ukraine@parker.com
UK - United Kingdom, Warwick
Tel: +44 (0)1926 317878
parker.uk@parker.com
US - USA, Cleveland
Tel: +1 2168963000
VE - Venezuela, Caracas
Tel: +58 2122385422
ZA - South Africa, Kempton Park
Tel: +27 (0)11 9610700
parker.southafrica@parker.com

European Product Information Centre

Free phone: 0080027275374
(from AT, BE, CH, CZ, DE, DK, ES, FI, FR, IE, IT, NL, NO, PL, PT, RU, SE, UK, ZA)

[^0]: 1 Total travel = OAL - 5.50" $(139.7 \mathrm{~mm})$ - carriage length.
 2 Maximum base length is $168^{\prime \prime}, 4.2$ meters.
 3 Aluminum base is black anodized. Steel base is nickel plated.
 4 For complete motor specifications, refer to 410 series motor data sheet.
 5 Renishaw encoder, RGH24 series, available in $0.05 \mu \mathrm{~m}, 0.1 \mu \mathrm{~m}, 0.5 \mu \mathrm{~m}$, $1.0 \mu \mathrm{~m}, 5.0 \mu \mathrm{~m}$.
 6 Cable extends past base by approximately $0.6^{\prime \prime}$ when carriage is at negative hard stop.

[^1]: *Consult factory for longer lengths.

