Linear Motion Systems with Belt Drive and Slide Guide

Overview

Movopart M

and the second s	

- Features
- Can be installed in any orientation
- Patented self-adjusting prism slide guides
- Resistant to shock loads and vibrations
- Low cost

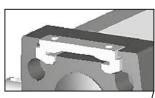
Parameter		M50
Profile size (width × height)	[mm]	50×50
Stroke length (Smax), maximum	[mm]	5000
Linear speed, maximum	[m/s]	5,0
Dynamic carriage load (Fz), maximum	[N]	400
Remarks		no cover band
Page		96

Movopart M

Features

- Can be installed in any orientation
- Self-adjusting stainless steel cover band
- Patented self-adjusting prism slide guides
- Wash down and enhanced wash down protected versions available

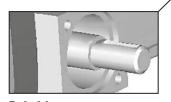
Parameter		M55	M75	M100
Profile size (width × height)	[mm]	58 × 55	86 × 75	108 × 100
Stroke length (Smax), maximum	[mm]	7000	12000	11900
Linear speed, maximum	[m/s]	5,0	5,0	5,0
Dynamic carriage load (Fz), maximum	[N]	400	1485	3005
Remarks		-	-	
Page		98	100	102


Linear Motion Systems with Belt Drive and Slide Guide

Overview

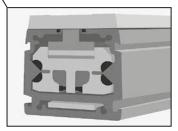
M-Series Technical Presentation

Cover band


The self-adjusting magnetically sealed stainless steel cover band protects the unit from the penetration of dirt, dust and liquids.

Environmental protection

The standard unit can operate in harsh environments but is also available in wash down or enhanced wash down protected versions for the toughest environments.



Belt drive

The belt runs on the inside of the profile and can easily be re-tensioned without removing the load from the carriage.

Note! the unit is pictured without a RediMount[™] flange

Prism slide guides

The patented self-aligning prism slide guides are accurate, durable and are resistant to vibrations and shock loads.

M50 Belt Drive, Slide Guide

» Ordering key - see page 206

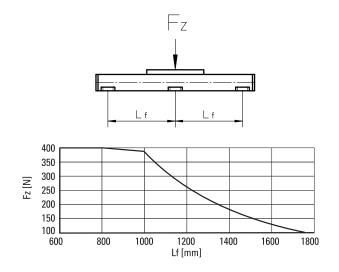
» Accessories - see page 131

» Additional data - see page 180

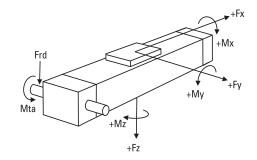
General Specifications

Parameter	M50
Profile size (w \times h) [mm]	50 × 50
Type of belt	GT 5MR-19
Carriage sealing system	none
Adjustable belt tensioning	the belt can be retensioned by the customer if necessary
Lubrication	lubricated for life
Included accessories	none

Performance Specifications for Units with Single Standard Carriage (A00)


Parameter		M50
Stroke length (Smax), maximum	[mm]	5000
Total length (L tot), maximum	[mm]	5296
Linear speed, maximum	[m/s]	5,0
Acceleration, maximum	[m/s ²]	40
Repeatability	[± mm]	0,2
Input speed, maximum	[rpm]	2300
Operation temperature limits	[°C]	-20 - 70
Dynamic load (Fx), maximum < 2,5 m/s > 2,5 m/s	[N]	400 200
Dynamic load (Fy), maximum	[N]	400
Dynamic load (Fz), maximum	[N]	400
Dynamic load torque (Mx), maximum	[Nm]	5
Dynamic load torque (My), maximum	[Nm]	21
Dynamic load torque (Mz), maximum	[Nm]	21
Drive shaft force (Frd), maximum ¹	[N]	350
Input/drive shaft torque (Mta), maximum	[Nm]	10
Pulley diameter	[mm]	41,38
Stroke per shaft revolution	[mm]	130
Weight of unit with zero stroke of every 100 mm of stroke of carriage ¹ Only relevant for units without RediMount flange.	[kg]	0,71 0,96 0,33

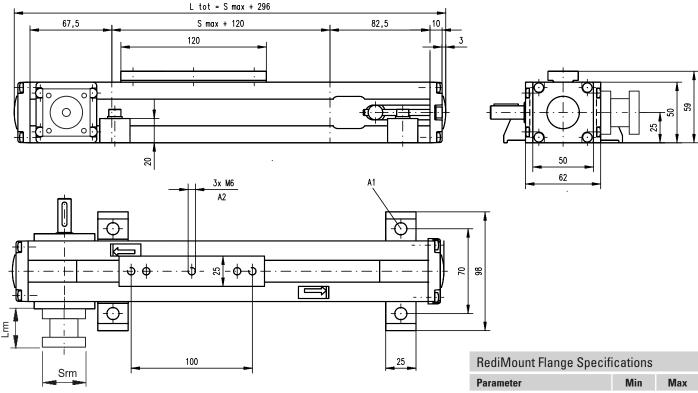
Carriage Idle Torque (M idle) [Nm]


Input speed [rpm]	Idle torque [Nm]
150	2,1

M idle = the input torque needed to move the carriage with no load on it.

Deflection of the Profile

Definition of Forces


¹ Only relevant for units without RediMount flange.

M50

Dimensions Projection Online Sizing & Selection! \Box METRIC

www.LinearMotioneering.com

Belt Drive, Slide Guide

A1: ø6,5 for M6 screw A2: depth 9, Heli coil

Parameter		Min	Мах
Flange length (Lrm)	[mm]	57	92
Flange square (Srm)	[mm]	60	139
Flange weight *	[kg]	1,	84

 * Max. weight including coupling and fastening screws

M55 Belt Drive, Slide Guide

» Ordering key - see page 206

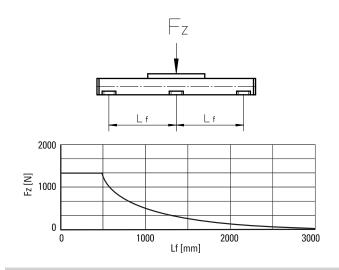
» Accessories - see page 131

» Additional data - see page 180

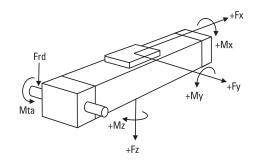
General Specifications

Parameter	M55
Profile size (w \times h) [mm]	58 × 50
Type of belt	22-STD SM5-HP
Carriage sealing system	self-adjusting steel cover band
Adjustable belt tensioning	the belt can be retensioned by the customer if necessary
Lubrication	lubricated for life
Included accessories	none

Performance Specifications for Units with Single Standard Carriage (A)¹


с с		
Parameter		M55
Stroke length (Smax), maximum	[mm]	7000
Total length (L tot), maximum	[mm]	7313
Linear speed, maximum	[m/s]	5,0
Acceleration, maximum	[m/s ²]	40
Repeatability	[± mm]	0,2
Input speed, maximum	[rpm]	2850
Operation temperature limits	[°C]	-20 - 70
Dynamic load (Fx), maximum < 2,5 m/s > 2,5 m/s	[N]	400 200
Dynamic load (Fy), maximum	[N]	400
Dynamic load (Fz), maximum	[N]	400
Dynamic load torque (Mx), maximum	[Nm]	9
Dynamic load torque (My), maximum	[Nm]	21
Dynamic load torque (Mz), maximum	[Nm]	21
Drive shaft force (Frd), maximum ²	[N]	200
Input/drive shaft torque (Mta), maximum	[Nm]	7
Pulley diameter	[mm]	33,42
Stroke per shaft revolution	[mm]	105
Weight of unit with zero stroke of every 100 mm of stroke of carriage	[kg]	4,10 0,41 1,10

Carriage Idle Torque (M idle) [Nm]

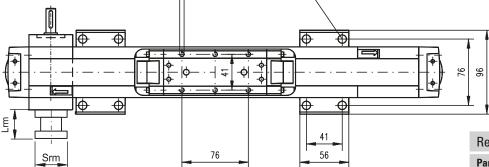

Input speed [rpm]	Single Carriage	Double Carriages
150	2,1	3,8

M idle = the input torque needed to move the carriage with no load on it.

Deflection of the Profile

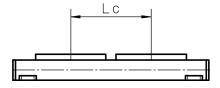
Definition of Forces

¹ See next page for deviating values of units with other carriage types.


 $^{\rm 2}$ Only relevant for units without RediMount flange.

62,5 69

25


M55 Belt Drive, Slide Guide

L tot = S max + 31324 28 S max + 184 48 184 118 2,5 ⊴∎ Þ 0 22 Ø6 58 A1 202 221,5 86 146 M5 × 0,8 A2

RediMount Flange Specifications				
Parameter		Min	Max	
Flange length (Lrm)	[mm]	57	92	
Flange square (Srm)	[mm]	60	139	
Flange weight *	[ka]	1.	84	

* Max. weight including coupling and fastening screws

A1: slide guide tensioning holes A2: ø9,5/ø5,5 for socket head cap screw M5

Performance Specifications for Units with Double Standard Carriage (C)

-		
Parameter		M55
Stroke length (Smax), maximum	[mm]	6800
Total length (L tot), maximum	[mm]	7313
Minimum distance between carriages (Lc)	[mm]	200
Dynamic load (Fy), maximum	[N]	600
Dynamic load (Fz), maximum	[N]	600
Dynamic load torque (My), maximum	[Nm]	$Lc^1 \times 0,3$
Dynamic load torque (Mz), maximum	[Nm]	$Lc^1 \times 0,3$
Force required to move second carriage	[N]	35
Total length (L tot]	[mm]	Smax + Lc + 313
Weight of unit with zero stroke of carriages ¹ Value in mm	[kg]	6,00 2,20

M75 Belt Drive, Slide Guide

» Ordering key - see page 206

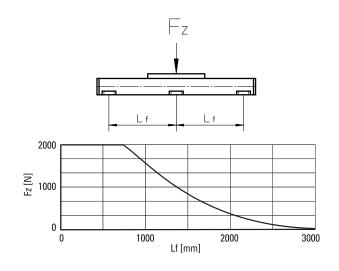
» Accessories - see page 131

» Additional data - see page 180

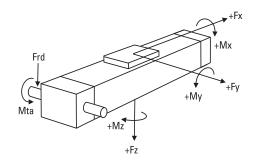
General Specifications

Parameter	M75
Profile size (w \times h) [mm]	86 × 75
Type of belt	STD5-40
Carriage sealing system	self-adjusting steel cover band
Adjustable belt tensioning	the belt can be retensioned by the customer if necessary
Lubrication	lubricated for life
Included accessories	none

Performance Specifications for Units with Single Standard Carriage (A)¹


Parameter		M75
Stroke length (Smax), maximum	[mm]	12000
Total length (L tot), maximum	[mm]	12368
Linear speed, maximum	[m/s]	5,0
Acceleration, maximum	[m/s ²]	40
Repeatability	[± mm]	0,2
Input speed, maximum	[rpm]	2300
Operation temperature limits	[°C]	-20 - 70
Dynamic load (Fx), maximum < 2,5 m/s > 2,5 m/s	[N]	900 450
Dynamic load (Fy), maximum	[N]	1485
Dynamic load (Fz), maximum	[N]	1485
Dynamic load torque (Mx), maximum	[Nm]	49
Dynamic load torque (My), maximum	[Nm]	85
Dynamic load torque (Mz), maximum	[Nm]	85
Drive shaft force (Frd), maximum ²	[N]	600
Input/drive shaft torque (Mta), maximum	[Nm]	30
Pulley diameter	[mm]	41,38
Stroke per shaft revolution	[mm]	130
Weight of unit with zero stroke of every 100 mm of stroke of carriage	[kg]	6,30 0,67 1,50

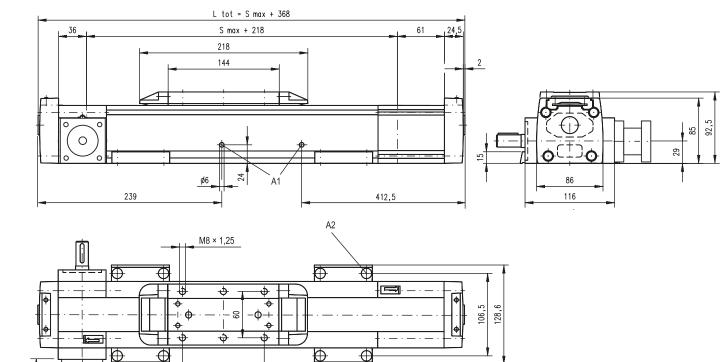
Carriage Idle Torque (M idle) [Nm]


Input speed [rpm]	Single Carriage	Double Carriages
150	2,2	4,0

M idle = the input torque needed to move the carriage with no load on it.

Deflection of the Profile

Definition of Forces



¹ See next page for deviating values of units with other carriage types.

 $^{\rm 2}$ Only relevant for units without RediMount flange.

M75 Belt Drive, Slide Guide

Dimensions	Projection	Online Sizing & Selection!
METRIC	$ \bigcirc $	www.LinearMotioneering.com

60

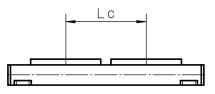
75

A1: slide guide tensioning holes A2: ø13,5/ø8,5 for socket head cap screw M8

Srm

Е

Performance Specifications for Units with Double Standard Carriage (C)


Tor onits with bouble standard carriage (0,	
Parameter		M75
Stroke length (Smax), maximum	[mm]	11750
Total length (L tot), maximum	[mm]	12368
Minimum distance between carriages (Lc)	[mm]	250
Dynamic load (Fy), maximum	[N]	2227
Dynamic load (Fz), maximum	[N]	2227
Dynamic load torque (My), maximum	[Nm]	Lc ¹ × 1,114
Dynamic load torque (Mz), maximum	[Nm]	Lc ¹ × 1,114
Force required to move second carriage	[N]	40
Total length (L tot]	[mm]	Smax + Lc + 368
Weight of unit with zero stroke of carriages ¹ Value in mm	[kg]	9,50 3,00

106

RediMount Flange Specifications

Parameter		Min	Max
Flange length (Lrm)	[mm]	81	143
Flange square (Srm)	[mm]	90	200
Flange weight *	[kg]	6,	00

* Max. weight including coupling and fastening screws

M100 Belt Drive, Slide Guide

» Ordering key - see page 206

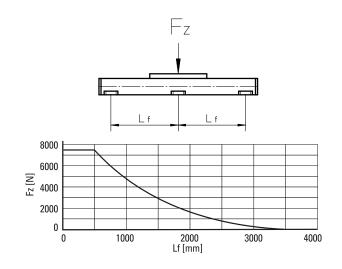
» Accessories - see page 131

» Additional data - see page 180

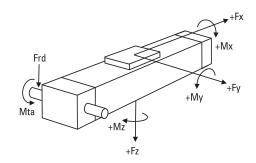
General Specifications

Parameter	M100
Profile size (w \times h) [mm]	108 × 100
Type of belt	STD8-50
Carriage sealing system	self-adjusting steel cover band
Adjustable belt tensioning	the belt can be retensioned by the customer if necessary
Lubrication	lubricated for life
Included accessories	none

Performance Specifications for Units with Single Standard Carriage (A)¹


Parameter		M100
Stroke length (Smax), maximum	[mm]	11900
Total length (L tot), maximum	[mm]	12331
Linear speed, maximum	[m/s]	5,0
Acceleration, maximum	[m/s ²]	40
Repeatability	[± mm]	0,2
Input speed, maximum	[rpm]	1700
Operation temperature limits	[°C]	-20 - 70
Dynamic load (Fx), maximum < 2,5 m/s > 2,5 m/s	[N]	1250 625
Dynamic load (Fy), maximum	[N]	3005
Dynamic load (Fz), maximum	[N]	3005
Dynamic load torque (Mx), maximum	[Nm]	117
Dynamic load torque (My), maximum	[Nm]	279
Dynamic load torque (Mz), maximum	[Nm]	279
Drive shaft force (Frd), maximum ²	[N]	1000
Input/drive shaft torque (Mta), maximum	[Nm]	45
Pulley diameter	[mm]	56,02
Stroke per shaft revolution	[mm]	176
Weight of unit with zero stroke of every 100 mm of stroke of carriage ¹ See next page for deviating values of units with othe	[kg]	11,10 1,16 2,40

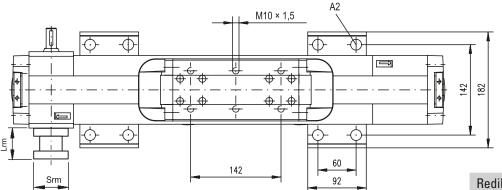
Carriage Idle Torque (M idle) [Nm]


Input speed [rpm]	Single Carriage	Double Carriages
150	3,8	5,8

M idle = the input torque needed to move the carriage with no load on it.

Deflection of the Profile

Definition of Forces



See next page for deviating values of units with other carriage types.

² Only relevant for units without RediMount flange.

M100 Belt Drive, Slide Guide

L tot = S max + 431 27 S max + 306 42 26 306 198 2 119 110 0 4 34 22 108 ø6 120 A3 A4 A1

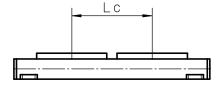
A1: slide guide tensioning holes

A2: ø17/ø10,5 for socket head cap screw M10

A3: 170 (L tot <= 1056 mm), 270 (L tot > 1056 mm)

A4: 186 (L tot < = 1056 mm), 436 (L tot > 1056 mm)

Performance Specifications for Units with Double Standard Carriage (C)


. .		
Parameter		M100
Stroke length (Smax), maximum	[mm]	11550
Total length (L tot), maximum	[mm]	12331
Minimum distance between carriages (Lc)	[mm]	350
Dynamic load (Fy), maximum	[N]	4508
Dynamic load (Fz), maximum	[N]	4508
Dynamic load torque (My), maximum	[Nm]	Lc ¹ × 2,254
Dynamic load torque (Mz), maximum	[Nm]	Lc ¹ × 2,254
Force required to move second carriage	[N]	45
Total length (L tot]	[mm]	Smax + Lc + 431
Weight of unit with zero stroke of carriages	[kg]	17,40 4,80

¹ Value in mm

RedilViount Flange	Specifi	ications	
Darameter		Min	Max

Falallelel		IAIIII	IVIAX
Flange length (Lrm)	[mm]	81	143
Flange square (Srm)	[mm]	90	200
Flange weight *	[kg]	6,	00

* Max. weight including coupling and fastening screws

Accessory Index

Mounting Kits	page 132
Mounting clamps 132	• Adapter plates
• Mounting clamps for multi axis systems	• T-slot bolts and nuts
• Mounting plates for multi axis systems	

-	Shart protection cover	57	
•	Protective bellows	38	

Motors, Gears and Transmission Kits	page 142
• Worm gears type BS40 and TBS40142	• Intermediate shafts type VWZ and DSP154
• Belt gears type RT and BGM146	• Brakes
• Planetary gears type Micron DT and DTR152	

Electrical Feedback Devices.....page 159

 Limit switch brackets and limit switches	
• Encoders	• Encoder kits type ADG168

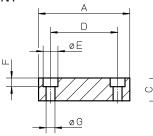
Non-driven Linear Motion Systems......page 170

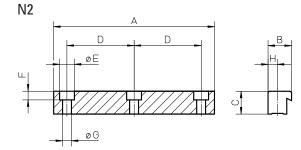
•	WHxx non-driven units	170
•	WMxx non-driven units	172
•	Mxx non-driven units	175

Non-RediMount Linear Motion Systems......page 176

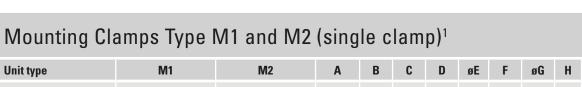
WMxx and WVxx non-RediMount units	176
MLSMxx non-RediMount units	178
Mxx ball screw driven non-RediMount units	179
• WH40 non-RediMount units	
WMxxZ non-RediMount units	
Mxx belt driven non-RediMount units	

MLSM80Z non-RediMount units	183
• M50 belt driven non-RediMount units	184
WHxx non-RediMount units	184
MLSH60Z non-RediMount units	186
WHZxx non-RediMount units	186

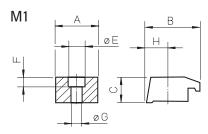

Mounting Kits

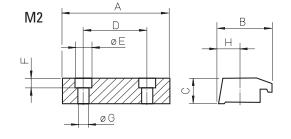

Mounting Clamps Type N1 and N2 (single clamp)¹

Unit type	N1	N2	Α	В	C	D	øE	F	øG	Н	Screws	Ms [Nm]
WH40	890 885 0001	-	54	16	9,5	40	10	5,7	5,5	7	ISO4762-8.8	5,4
WH50	890 885 0001	-	54	16	9,5	40	10	5,7	5,5	7	ISO4762-8.8	5,4
WH80 / WB60	890 190 02	-	68	17,5	17	50	11	6,5	6,6	7	ISO4762-8.8	9
WH120	890 192 13	-	80	25	18	50	15	8,5	9	10	ISO4762-8.8	20
WM40 / WB40	890 885 001	-	54	16	9,5	40	10	5,7	5,5	7	ISO4762-8.8	5,4
WM60 / WV60 / WZ60	890 190 02	-	68	17,5	17	50	11	6,5	6,6	7	ISO4762-8.8	9
WM80 / WV80 / WZ80	890 190 02	-	68	17,5	17	50	11	6,5	6,6	7	ISO4762-8.8	9
WM60Z / WM80Z	890 190 02	-	68	17,5	17	50	11	6,5	6,6	7	ISO4762-8.8	9
WM120 / WV120	890 192 13	-	80	25	18	50	15	8,5	9	10	ISO4762-8.8	20
MLS60	890 190 02	890 192 26	68/120	17,5	17	50	11	6,5	6,6	7	ISO4762-8.8	9
MLS80	890 192 13	890 192 31	80/200	25	18	50	15	8,5	9	10	ISO4762-8.8	20


¹ Screws included in the shipment of above clamps

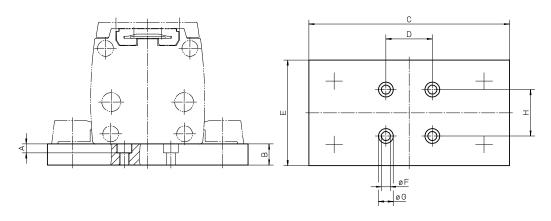
N1




Ms = tightening torque of screws

Unit type	M1	M2	Α	В	C	D	øE	F	øG	Н	Screws	Ms [Nm]
M50 ¹	D312 248	-	25	30	20	-	-	-	6,5	14	ISO4762-8.8	9,4
M55 ¹	D313 403	D313 402	25/56	25,5	10,7	41	9,5	5,3	5,5	10,2	ISO4762-8.8	5,5
M75 ¹	D312 747	D312 748	30/75	28,5	15	60	14	8,5	8,5	11	ISO4762-8.8	23
M100 ¹	D312 339	D312 334	45/92	46,5	22	60	17	10,5	10,5	20	ISO4762-8.8	45

¹ No screws included in the shipment of above clamps

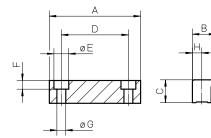

Ms = tightening torque of screws

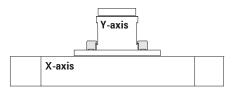
Mounting Kits

Mounting Clamps Type M2 with Plate¹

Unit type	p/n	А	В	C	D	E	øF	øG	Н
M50	D312 117	7	20	105	35	30	6,5	11	-
M55	D313 474	8,5	15	100	44	70	8,5	14	44
M75	D312 718	8,5	15	134	44	80	8,5	14	44
M100	D312 317	8,5	20	190	44	100	8,5	14	44

¹ two mounting clamps of version M2 (see page 132) and screws to connect these to the plate are included in shipment

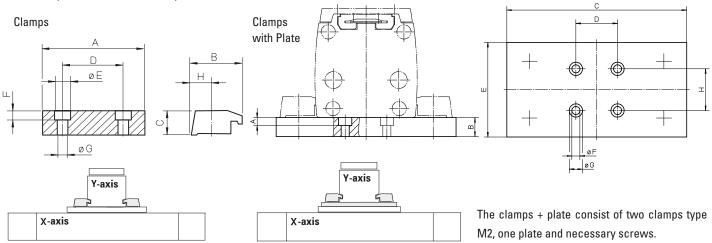



Mounting Kits

Mounting Clamps Type N1 for Multi Axis Systems¹

Unit type X-axis	Unit type Y-axis	Clamps	Α	В	C	D	øE	F	øG	H
WM40 / WH40	WM40 / WH40	on request	-	-	-	-	-	-	-	-
WM60	WM60	890 191 94	58	17,5	17	40	11	6,5	6,6	7

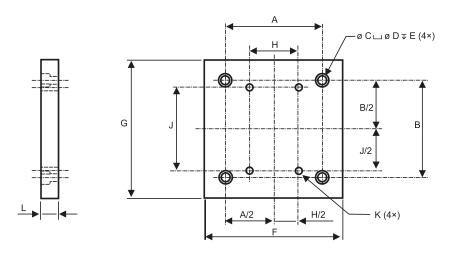
¹ all necessary screws are included in the shipment


Mounting Clamps Type M2 for Multi Axis Systems¹

Unit type X-axis	Unit type Y-axis	p/n	Α	В	C	D	øE	F	øG	H
M55	M55	D313 424	56	25,5	10,7	41	9,5	5,3	5,5	10,2
M75	M75	D312 719	75	28,5	15	60	14	8,5	8,5	11
M100	M100	D312 304	92	46,5	22	60	17	10,5	10,5	20

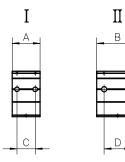
Mounting Clamps Type M2 with Plate for Multi Axis Systems¹

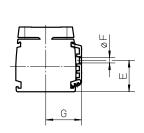
Unit type X-axis	Unit type Y-axis	p/n	Α	В	C	D	E	øF	øG	H
M55	M75	D313 470	5,5	15	134	76	80	5,5	9,5	41
M75	M55	D313 060	8,5	15	134	106	80	8,5	14	60
M75	M100	D313 062	8,5	20	190	106	100	8,5	14	60
M100	M75	D313 292	10,5	20	190	142	100	10,5	17	60


¹ all necessary screws are included in the shipment

Mounting Kits

Mounting Plates for Multi Axis Systems

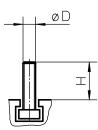

Unit type X-axis	Unit type Y-axis	p/n	Α	В	C	D	E	F	G	H	J	К	L
MS33	MS33	MSXYP33-33	30	30	6	9	6	60	120	30	100	M5 x 0,8 - 6H	12,7
MS33	MS25	MSXYP33-25	30	30	5,5	9	6	60	60	42	42	M3 x 0,5 - 6H	12,7
2HB10	MS25	2HXYP10-MS25	70	70	5,5	9	6	100	100	42	42	M3 x 0,5 - 6H	12,7
2HB10	MS33	2HXYP10-MS33	70	70	6	9	6	100	120	30	100	M5 x 0,8 - 6H	12,7
2HB10	2HB10	2HXYP10-10	70	70	5,5	9	6	100	100	35	75	M5 x 0,8 - 6H	12,7
2HB20	2HB10	2HXYP20-10	145	145	10,5	16,5	11	200	200	35	75	M5 x 0,8 - 6H	22
2HB20	2HB20	2HXYP20-10	145	145	10,5	16,5	11	200	200	85	120	M8 x 1,25 - 6H	22

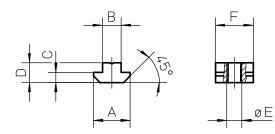


Combinations for other units are available. Plates to connect X and Z axes are also available for the Microstage units size MS25 and MS33. Contact customer support for details.

Adapter Plates

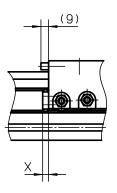
Unit type	I.	П	Α	В	C	D	E	øF	G
M55	D313 422	D313 423	40	60	20	38	25,5	6,5	37
M75	D312 746	-	40	-	26	-	45	6,5	51
M75	-	D312 745	-	60	-	39	45	7,5	51
M100	D312 338	-	40	-	26	-	69	6,5	62
M100	-	D312 337	-	60	-	39	69	7,5	62


Adapter plates are fitted in the grooves along the profile and can be used to attach sensors, switches, cable ducts etc. to the unit.


Mounting Kits

T-slot Bolts

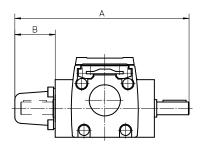
Unit type	p/n	ØD	Н
M50	D312 221	M5	14
Z2	D800 089	M10	28
Z3	D800 089	M10	28


T-slot Nuts							
Unit type	p/n	Α	В	C	D	øE	F
ZB	D900 151	18	11	1,5	6,3	M6	25
ZB	D900 150	18	11	1,5	6,3	M8	25
MLS60	920 303 0037	16	8	4	6	M6	16
MLS80	920 303 0039	19,5	10	5,5	10,5	M8	20
WH120	911 044 19	15	10	6	12	M8	15
WM120	911 044 19	15	10	6	12	M8	15
2RB12, 2HB10, 2HB20	TNUT-01-M3	7	4	1,75	3	M3	9
2RB16, 2HB10	TNUT-02-M4	9,5	5,5	2,25	4	M4	12
2RB12	TNUT-03-M4	12	7	2,5	5	M4	15
2RB16, 2HB20	TNUT-04-M4	16,5	7,9	4,8	6	M4	16
2RB16, 2HB20	TNUT-04-M5	16,5	7,9	4,8	6	M5	16
2RB16, 2HB20	TNUT-04-M6	16,5	7,9	4,8	6	M6	16

Cover and Protection Kits

FA Felt Pad Wiper

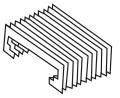
Unit type	Number of carriages on the unit	p/n	X
WH50	1	890 885 0064	6
WH50	2	2 × 890 885 0064	6
WH80	1	890 890 0069	7
WH80	2	2 × 890 890 0069	7
WH120	1	890 895 0058	8
WH120	2	2 × 890 895 0058	8
WHZ50	1	890 885 0064	6
WHZ50	2	2 × 890 885 0064	6
WHZ80	1	890 890 0069	7
WHZ80	2	2 × 890 890 0069	7

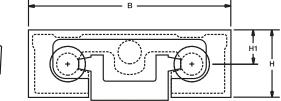


The felt pad wipers remove dust and dirt from the guides and are located on the carriage(s). They may increase the driving torque slightly but do not reduce the stroke of the unit. The felt pad wipers comes mounted from factory as standard on all WH and WHZ units but can also be ordered here as a spare part.

Shaft Protection Cover

Unit type	p/n	А	В
M50	D312 201	126	35
M55	D312 201	151	35
M75	D700 178	198	45
M100	D700 178	202	45

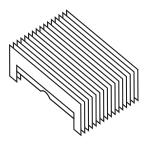


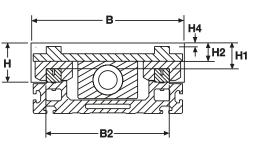

The shaft protection cover is used to cover shafts which are not being used. The covers are fitted by the customer.

Cover and Protection Kits

Protective Bellows type 2D

Unit type	n/n	ц	H1	P
Onicitype	p/n			D
2DB08	BEL-2DB-08	48	34	130
2DB12	BEL-2D-12	61	36,5	152,5
2DB12	BEL-2D-16	73	43	190,5

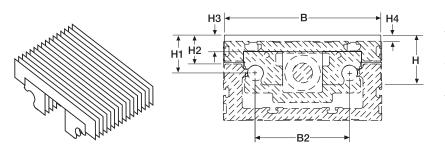




Bellows protect the unit from dirt and dust. Note that the bellows option reduces the available stroke of the unit by 28%. Bellows can be ordered and mounted at the factory - see ordering key. Bellows can also be ordered separately and fitted by the customer. In that case, order two pieces of bellows where the length of each bellows piece = stroke length of the unit × 0.86.

Protective Bellows type 2H

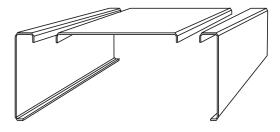
Unit type	p/n	В	B2	H	H1	H2	H4
2HB10	BEL-2H-10	103	81	26	11	10	0
2HB20	BEL-2H-20	199	167	48	30	15	5



Bellows protect the unit from dirt and dust. Note that the bellows option reduces the available stroke of the unit by 28%. Bellows can be ordered and mounted at the factory - see ordering key. Bellows can also be ordered separately and fitted by the customer. In that case, order two pieces of bellows where the length of each bellows piece = stroke length of the unit \times 0.86.

Protective Bellows type 2R

Unit type	p/n	В	B2	H	H1	H2	H3	H4
2RB12	BEL-2R-12	128	75	48	37	29	15	12
2RB16	BEL-2R-16	158	95	52	43	30	15	10



Bellows protect the unit from dirt and dust. Note that the bellows option reduces the available stroke of the unit by 28%. Bellows can be ordered and mounted at the factory - see ordering key. Bellows can also be ordered separately and fitted by the customer. In that case, order two pieces of bellows where the length of each bellows piece = stroke length of the unit × 0.86.

Cover and Protection Kits

Protective Shrouds

Unit type	
2HB10	see ordering key of the unit for order or www.LinearMotioneering.com
2HB20	see ordering key of the unit for order or www.LinearMotioneering.com

The protective shrouds are made of metal and protect the drive mechanism of the unit from dust and dirt but leave the guides unprotected. Shrouds do not reduce the stroke of the unit but they will add 4 mm to the width of the unit. Shrouds are ordered mounted from factory and are stated in the ordering key of the unit.

Cover and Protection Kits

Environment Protection Option Type S1 and S2, compatibility table

Unit type	Drive type	Guide type	S 1	S2	Ordering
M55	ball screw	slide	•		see ordering key of the unit for order
M55	belt drive	slide	•	•	see ordering key of the unit for order
CCIVI		ball	•		see ordering key of the unit for order
M75	ball screw	slide	•		see ordering key of the unit for order
M75	belt drive	slide	•	•	see ordering key of the unit for order
1017.5		ball	•		see ordering key of the unit for order
M100	ball screw	slide	•		see ordering key of the unit for order
M100	belt drive	slide	•	•	see ordering key of the unit for order
IVI I UU	beit unve	ball	•		see ordering key of the unit for order
WM60 / WM80 / WM120	ball screw	ball	•		see ordering key of the unit for order
WV60 / WV80 / WV120	ball screw	no guide	•		see ordering key of the unit for order
WH50 / WH80 / WH120	belt drive	wheel	•	•	see ordering key of the unit for order
WHZ50 / WHZ80	belt drive	wheel	•		see ordering key of the unit for order

The S1 and S2 environment protection options are available for some of the units as per table above. All performance data and the life expectancy are the same as for standard units except for WH and WHZ units (contact customer service for more information). S1 can be ordered for both ball screw and belt driven units with ball, slide or wheel guides while S2 only is possible for belt driven units with slide or wheel guides. Never use chemical agents and/or cleaning detergents before contacting your local Thomson customer service for advice.

S1 - Wash down protection

Typical places where S1 is used are in slaughter houses, dairy plants, food plants or in any other light wash down application.

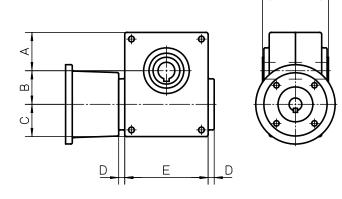
S2 - Enhanced wash down protection

Typical places where S2 is used are in moderately wet areas such as in paper mills, galvanizing equipment, food industries or in any other harsh environment application where enhanced wash down capabilities are required.

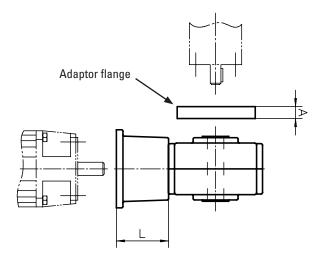
Cover and Protection Kits

Environment Protection Options Type S1 and S2, technical specification

Item	S1	S2
External screws, bolts and nuts	stainless material class A2 or better	stainless material class A4 or better
Internal screws, bolts and nuts	standard material	stainless material class A2 or better
Drive shaft, ball screw driven units	standard material	-
Drive shaft, belt driven units	stainless material SS2333 or better	stainless material SS2343 or better
Tension wheel shaft	standard material	stainless material SS2333 or better
Bearings type	standard bearings	2RS
Bearing sealings, belt driven units	radial sealings	radial sealings
Surface treatment of machined extruded aluminum parts	none	anodizing
Surface treatment of machined casted aluminum parts	none	anodizing
Cam rollers and idler shafting (WH and WHZ units)	standard material	stainless material
Belt retainer (WH units)	none	stainless material


Gears and Transmission Kits

BS40 Worm Gears, dimensions


Gear	А	В	C	D	E	F
BS40	54	40	46	10	100	92

F

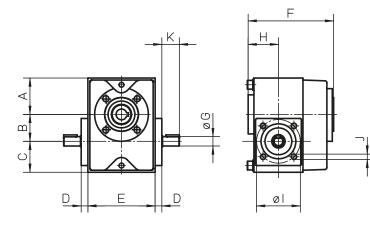
The worm gear includes the gear, the bell house and a matching coupling.

BS40 Worm Gears, compatibility table Unit BS40 IEC71B14 IEC80B14 IEC90B14 A L Z2 (MGZ2K32) • • 17 58 Z2 (MGZ2K32) • • 17 68

To be able to install the gear to the unit an adaptor flange must be used between the gear and the unit. In addition, the adaptor flange must be ordered separately.

Gears and Transmission Kits

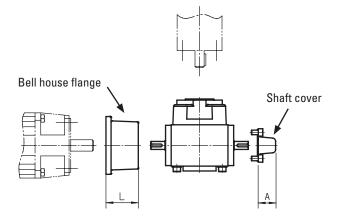
BS40 Worm Gears, ordering key					
	1		2		3
Example	BS40		-10		-71
1. Type and si BS40 = BS40	ize of worm gear worm gear	2. Gear ratio -3 = 3:1 -5,5 = 5,5:1 -7,5 = 7,5:1 -10 = 10:1 -15 = 15:1 -20 = 20:1 -24 = 24:1 -30 = 30:1 -40 = 40:1 -48 = 48:1 -60 = 60:1		no -71	Motor size code = without bell house and coupling I = IEC71B14 D = IEC80B14


Adaptor flanges for BS40 Worm Gears, part numbers

Unit	p/n
Z2 (MGZ2K32)	D606 250

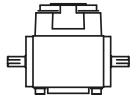
Gears and Transmission Kits

TBS40 Worm Gears, dimensions


Gear	А	В	C	D	E	F	øG	Н	øl	J	К
TBS40	54	40	46	10	100	125	14j6	45	65	M8 (4×)	25

The worm gear is installed directly to the unit and requires no intermediate coupling between the two.

TBS40 Worm Gears, compatibility table


Unit	TBS40	IEC71B14	IEC80B14	Α	L
Z2 (MGZ2K25)	•	•		32	58
Z2 (MGZ2K25)	•		•	32	68
Z3 (MGZ3K25)	•	•		32	58
Z3 (MGZ3K25)	•		•	32	68
M75	•	•		32	58
M75	•		•	32	68
M100	•	•		32	58
M100	•		•	32	68

To be able to install the gear to the motor a bell house flange must be used between the gear and the motor. The bell house flange, which includes a matching coupling, is ordered separately. A shaft cover can be ordered to cover the second primary shaft on the gear in case it is not being used.

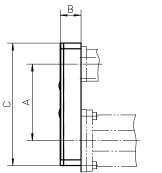
Gears and Transmission Kits

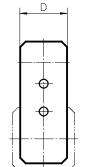
TBS40 Worm Gears, ordering key					
	1		2	3	
Example	TBS40		-3	-216	
	ize of worm gear 40 worm gear	2. Gear ratio -3 = 3:1 -5,5 = 5,5:1 -7,5 = 7,5:1 -10 = 10:1 -15 = 15:1 -20 = 20:1 -24 = 24:1 -30 = 30:1 -40 = 40:1 -48 = 48:1 -60 = 60:1		3. Fixed code -216	

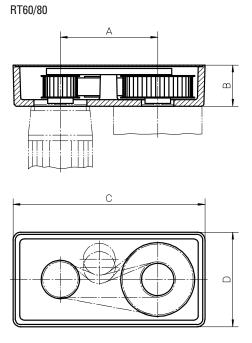
Bell house flanges for TBS40 Worm Gears, part numbers

Motor size	p/n
IEC71B14	D701 011
IEC80B14	D701 015

Shaft Cover for TBS40 Worm Gears, part numbersGear typep/nTBS40D701 020






Gears and Transmission Kits

RT Belt Gears, dimensions					
Gear	Α	В	C	D	
RT40	110	30	176	68	
RT60	175	74	345	170	
RT80	175	74	345	170	

RT40

RT Belt Gears, data

Gear	i	Nmax [rpm]	Mmax [Nm]	M idle [Nm]	η	J [kgm²]	Weight [kg}
RT40	1:1	3000	1,75	0,3	0,80	0,000025	0,62
RT60	1:1	3000	15	0,7	0,85	0,000438	5,6
RT60	2:1	3000	15	0,7	0,85	0,001011	7,1
RT80	1:1	3000	30	0,7	0,85	0,000465	5,5
RT80	2:1	3000	30	0,7	0,85	0,001038	7

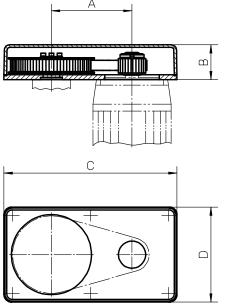
i	= gear ratio	M idle	= idle torque
Nmax	= max. input speed	η	= efficiency factor
Mmax	= max. input torque	J	= inertia

Gears and Transmission Kits

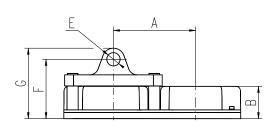
RT Belt Gears, compatibility table						
Gear	WH40 / WM40	WM60 / WV60 / WZ60 / MLSM60D	WH80 / WM80 / WV80 / WM120 / WV120 / MLSM60D / MLSM80D			
RT40	•					
RT60		•				
RT80			•			

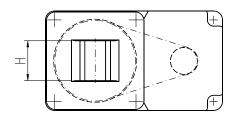
RT Belt	t Gears, orderi	ng key			
	1	2	3	4	5
Example	RT80	-2	-•••	- P - N	-05
RT40 = RT be RT60 = RT be	ize of belt gear It gear size 40 It gear size 60 It gear size 80	There are sever and the list of su being updated. I support for help currently are on motor can be ac 4. Type of mount -P-M = gear sup		-02 = WH50 -03 = WH80 -04 = WH120 -05 = WM40	γpe

RT belt gears can only be used on units without a RediMount flange.

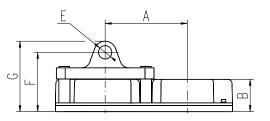


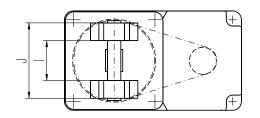
Gears and Transmission Kits


BGM Belt Gears, dimensions


Gear	Α	В	C	D	øE	F	G	Н	I.	J
BGM09	118,7	52	255	140	20 H9	95	115	60	-	-
BGM41	155,2	70	305	165	25 H9	122	147	70	-	-
BGM81	200	73	399	224	30 H9	134	159	90	90H14	170

BGM09/41/81 - WITHOUT CLEVIS OPTION




BGM09/41/81 - WITH CLEVIS OPTION TYPE S

BGM81 - WITH CLEVIS OPTION TYPE R

BGM belt gears can only be used on units without a RediMount flange. The belt gear comes in parts and is assembled to the unit and motor by the customer.

Gears and Transmission Kits

BGM Belt Gears, data

Gear	i	Nmax [rpm]	Mmax [Nm]	η	J [kgm²]	Weight [kg}
BGM09	1,04:1	4000	4,1	0,85	0,000102	2
BGM09	1,85:1	4000	4,1	0,85	0,000112	2,1
BGM09	2,85:1	4000	4,1	0,85	0,000213	2,5
BGM41	1:1	4000	22,0	0,85	0,000438	3,4
BGM41	2:1	4000	15,8	0,85	0,000342	3,7
BGM41	3:1	4000	16,7	0,85	0,000583	4,6
BGM81	1:1	4000	29,0	0,85	0,000836	12,1
BGM81	2,25:1	4000	32,3	0,85	0,001051	12,9
BGM81	3,13:1	4000	30,3	0,85	0,001439	14

i	= gear ratio	η	= efficiency factor
Nmax	= max. input speed	J	= inertia
Mmax	= max. input torque		

BGM	BGM Belt Gears, compatibility table											
Gear	WM/V/Z60	WM/V80	WM/V120	MLSM80D	WB60	M50	M55	M75	M100	Z2		
BGM09	•				•	٠	•	•				
BGM41	•	•						•	•	•		
BGM81			•	•								

BGM Belt Gears, ordering keys

See next page for ordering keys.

Gears and Transmission Kits

BGM 09 Belt Gears, ordering key

	1	2	3	4	5	6	7	8
Example	BGM09	-2	- C C	063	Р	050	Х	+XX

1. Type and size of belt gear BGM09 = BGM belt gear size 09

2. Gear ratio

-1 = 1,04:1 -2 = 1,85:1 -3 = 2,85:1

3. Type of couplings

-CC = conical couplings

4. Motor size¹ 063 = IEC 63 B14 071 = IEC 71 B14 S80 = servo motor size 80 AK4 = servo motor type AKM 4

5. Type of mounting P = standard

6. Compatible unit type W06 = WM60, WV60, WZ60 WB6 = WB60 050 = M50 060 = M55 070 = M75

7. Clevis option

- X = no clevis option
- S = clevis option type S

8. Protection

- +XX = standard
- +S1 = wash down protection

¹This is only a selection of all motors that fit this gear. Please contact customer support to see if your preferred motor fits the gear.

BGM 41 Belt Gears, ordering key

	1	2	3	4	5	6	7	8
Example	BGM41	-1	- C C	071	Р	070	Х	+S1

 Type and size of belt gear BGM41 = BGM belt gear size 41 Gear ratio 141 	4. Motor size ¹ 071 = IEC 71 B14 080 = IEC 80 B14 S80 = servo motor size 80	7. Clevis option X = no clevis option S = clevis option type S
-1 = 1:1 -2 = 2:1 -3 = 3:1	S95 = servo motor size 95 AK5 = servo motor type AKM 5	8. Protection +XX = standard +S1 = wash down protection
3. Type of couplings -CC = conical couplings	5. Type of mounting P = standard 6. Compatible unit type W06 = WM60, WV60, WZ60 W08 = WM80, WV80 070 = M75 10B = M100 (MF/G10B) 10K = M100 (MF/G10K/C/D)	¹ This is only a selection of all motors that fit this gear. Please contact customer support to see if your preferred motor fits the gear.

Gears and Transmission Kits

BGM 81 Belt Gears, ordering key

	1	2	3	4	5	6	7	8
Example	BGM81	-1	- C C	090	Р	M8D	X	+XX

1. Type and size of belt gear BGM81 = BGM belt gear size 81

2. Gear ratio

-1 = 1:1 -2 = 2,25:1 -3 = 3,13:1

3. Type of couplings

-CC = conical couplings

4. Motor size¹ 090 = IEC 90 B14 100 = IEC 100/121 B14 A20 = servo motor size A200 AK6 = servo motor type AKM 6

5. Type of mounting P = standard

6. Compatible unit type W12 = WM120, WV120 M8D = MLSM80D

7. Clevis option

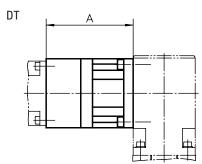
X = no clevis option

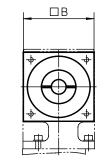
S = clevis option type S

R = clevis option type R

8. Protection

+XX = standard +S1 = wash down protection

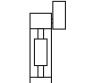

'This is only a selection of all motors that fit this gear. Please contact customer support to see if your preferred motor fits the gear.

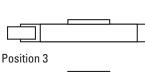

Gears and Transmission Kits

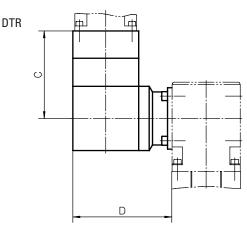
1111010	wherein DT, DTHT fanetary dears, compatibility and dimensions											
Unit	Gear	i	□A	В	C		E	Weight [kg]	Backlash [arc min]	Efficiency [%]		
	DT60-SS	3:1 - 10:1	89,7	60	-	-	-	1	8	90		
	DT60-DS	15:1 - 100:1	106,9	60	_	-	_	1,2	9	85		
WH50	DTR60-SS	5:1 - 50:1	-	-	110,2	104,1	60	2,5	9	90		
	DTR60-DS	60:1 - 500:1	-	-	127,3	104,1	60	2,7	9	85		
	DT90-SS	3:1 - 10:1	110,9	90	_	-	_	3	9	90		
14/1100	DT90-DS	15:1 - 100:1	133,5	90	-	-	-	3,7	9	85		
WH80	DTR90-SS	5:1 - 50:1	-	-	145,4	138,2	90	4,8	9	90		
	DTR90-DS	60:1 - 500:1	-	-	168,0	138,2	90	5,5	9	85		
	DT115-SS	3:1 - 10:1	136,4	110	-	-	-	12,7	8	90		
WH120	DT115-DS	15:1 - 100:1	167,4	110	-	-	-	16,2	9	85		
VVHIZU	DTR115-SS	5:1 - 50:1	-	-	185,7	173,5	115	11	8	90		
	DTR115-DS	60:1 - 500:1	-	-	216,7	173,5	115	12	9	85		
	DT60-SS	3:1 - 10:1	89,7	60	-	-	-	1	8	90		
	DT60-DS	15:1 - 100:1	106,9	60	-	-	-	1,2	9	85		
WM60Z	DTR60-SS	5:1 - 50:1	-	-	110,2	104,1	60	2,5	9	90		
	DTR60-DS	60:1 - 500:1	-	-	127,3	104,1	60	2,7	9	85		
	DT90-SS	3:1 - 10:1	110,9	90	-	-	-	3	9	90		
14/14007	DT90-DS	15:1 - 100:1	133,5	90	-	-	-	3,7	9	85		
WM80Z	DTR90-SS	5:1 - 50:1	-	-	145,4	138,2	90	4,8	9	90		
	DTR90-DS	60:1 - 500:1	-	-	168,0	138,2	90	5,5	9	85		

Micron DT. DTR Planetary Gears, compatibility and dimensions

Micron gears can only be used on units without a RediMount flange. Micron DT and DTR planetary gears comes mounted on the unit from factory.







i = gear ratio

Position 2

www.thomsonlinear.com

Gears and Transmission Kits

Micron DT, DTR Planetary Gears, how to order

When ordering a DT or DTR planetary gear you need to state the size and type of gear, which side of the unit the gear shall be installed, the gear ratio and which motor that you wish to use. For DTR you also must state the preferred mounting position of the gear. With this information we can check if your choice of motor is possible or not and give you the correct ordering code for the gear.

Micron DT, ordering data

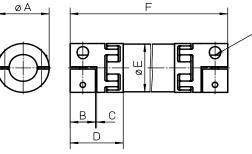
1. Size of planetary gear **DT60** DT90 DT115 2. Type of gear -SS -DS 3. Mounting side of the unit Left Right 4. Gear ratio 3:1 (only for -SS models) 5:1 (only for -SS models) 10:1 (only for -SS models) 15:1 (only for -DS models) 25:1 (only for -DS models) 30:1 (only for -DS models) 50:1 (only for -DS models) 100:1 (only for -DS models)

5. Motor Specify your choice of motor.

Micron DTR, ordering data

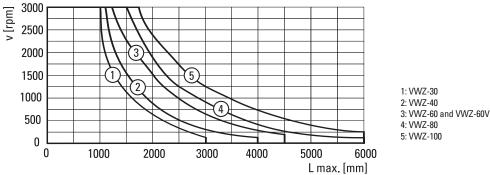
1. Type and size of planetary gear DTR60 DTR90 DTR115
2. Type of gear -SS -DS
3. Mounting position of the gear Position 1 Position 2 Position 3 Position 4
4. Mounting side of the unit Left Right 5. Gear ratio

5:1 (only for -SS models) 6:1 (only for -SS models) 9:1 (only for -SS models) 10:1 (only for -SS models) 12:1 (only for -SS models) 15:1 (only for -SS models) 20:1 (only for -SS models) 25:1 (only for -SS models) 30:1 (only for -SS models) 40:1 (only for -SS models) 50:1 (only for -SS models) 60:1 (only for -DS models) 75:1 (only for -DS models) 90:1 (only for -DS models) 100:1 (only for -DS models) 120:1 (only for -DS models) 125:1 (only for -DS models) 150:1 (only for -DS models) 200:1 (only for -DS models) 250:1 (only for -DS models) 300:1 (only for -DS models) 400:1 (only for -DS models) 500:1 (only for -DS models)


6. Motor

Specify your choice of motor.

Gears and Transmission Kits


VWZ Intermediate Shafts, dimensions										
Shaft	øA	В	C	D	øE	F min.	G			
VWZ-30	32	15	1,5	34	30	99	M4			
VWZ-40	42	17	1,5	46	40	133	M5			
VWZ-60	56	30	2	63	60	177	M6			
VWZ-60V	67	35	2	73	60	205	M8			
VWZ-80	82	40	2	84	80	249	M10			
VWZ-100	102	50	2	97	100	283	M12			

G

Ι 0 ₽f £ Π Ba53 Ba40

The VWZ intermediate shafts can be installed in two ways. Either directly to belt driven units (I) or to screw driven units using KRG bevel gears (II) of type VL50, VL100 or VL200. However, belt driven units with a RediMount flange can not be combined with VWZ shafts while screw driven units can, but in which case the unit must be ordered with the RediMount ID code that fits the bevel gear in question. The intermediate shaft includes tube and couplings.

VWZ Intermediate Shafts, data

Shaft	Mmax [Nm]	Gs [kg/m]	Gc [kg]	Js [kgm²/m]	Jc [kgm²]	Ms [Nm]
VWZ-30	4,8	0,58	0,14	0,00011	0,00001	4
VWZ-40	6,4	0,76	0,36	0,00020	0,00008	8
VWZ-60	22,7	0,97	0,94	0,00080	0,00024	15
VWZ-60V	60,6	0,97	1,42	0,00080	0,00046	35
VWZ-80	122,7	2,00	2,98	0,00300	0,00240	70
VWZ-100	169,7	2,47	4,62	0,00580	0,00600	120
		Mmax =	max. shaft torque	Gc = weight of	coupling Jc	= inertia of coupling
		Gs =	weight of shaft	Js = inertia of	shaft Ms	= tightening torque

www.thomsonlinear.com

Critical Speed of Shaft

Gears and Transmission Kits

VWZ Intermediate Shafts, compatibility table

Unit	I	П	VWZ-30	VWZ-40	VWZ-60	VWZ-60V	VWZ-80	VWZ-100	AA [mm]
WH40	•			•					AA = L + 56
WH50 / WHZ50	•				•				AA = L + 54
WM60Z	•				•				AA = L + 64
WH80 / WHZ80	•					•			AA = L + 84
WH120	•							•	AA = L + 124
WM80Z	•					•			AA = L + 84
MLSH60Z	•					•			AA = L + 164
WB40 / WM40		VL50	•						AA = L + 170
WB60		VL100			•				AA = L + 184
WM60 / WV60 / WZ60		VL100			•				AA = L + 184
WM80 / WV80 / MLSM60D		VL100				•			AA = L + 176
MLSM80Z	•						•		AA = L + 244
WM120 / WV120 / MLSM60D / MLSM80D		VL200					•		AA = L + 244

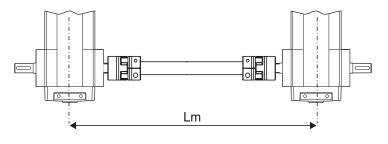
AA = C/C distance between units L = total length of shaft and coupling assembly

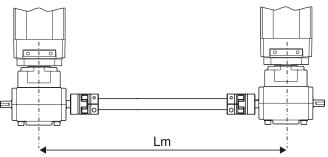
VWZ Intermediate Shafts, ordering key

		5 /	
	1	2	3
Example	VWZ-060	-02	-0700
1. Intermedia VWZ-030 = V VWZ-040 = V VWZ-060 = V VWZ-06V = V VWZ-080 = V VWZ-100 = V	/WZ-40 /WZ-60 /WZ-60V /WZ-80	 2. Type of unit and type of mounting -01 = WH40 for type I mounting -02 = WH50 / WHZ50 for type I mounting -03 = WM80Z for type I mounting -04 = WH80 / WHZ80 for type I mounting -05 = WH120 for type I mounting -06 = WM60Z for type I mounting -07 = MLSH60Z for type I mounting -08 = WB40 / WM40 for type II mounting on V -09 = WB60 for type II mounting on VL100 ge -10 = WM60 / WV60 / WZ60 for type II mounting -11 = WM80 / WV80 / MLSM60D for type II mounting -13 = WM120 / WV120 / MLSM60D / MLSM80 3. C/C distance between units (AA) - xxxx = distance in mm 	ars ing on VL100 gears counting on VL100 gears

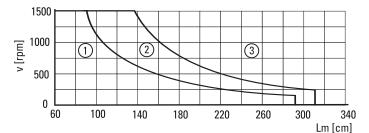
Accessories Gears and Transmission Kits

DSP Intermediate Shafts, data


Shaft	Weight of shaft [kg]	Max. speed [rpm]	Shaft diameter [mm]
DSP-05B	0,3 + 1,3 × Lm	1500	20
DSP-06B	0,3 + 1,3 × Lm	1500	20
DSP-07B	0,6 + 2,6 × Lm	1500	30
DSP-10B	0,6 + 2,6 × Lm	1500	30
DSBZB	0,6 + 2,6 × Lm	1500	30
DSP-TBS	0,6 + 2,6 × Lm	1500	30


Lm = C/C distance between units in cm

The DSP intermediate shaft can be installed directly between two belt driven units or between two screw driven units using a TBS worm gear. The DSP shaft can not be used on units with a Redi-Mount flange. Couplings and tube are included in the shipment. Support bearings may need to be installed if the critical speed of the shaft is exceeded. See diagram. Support bearings can be ordered from your local bearing supplier.


DSP-05B/06B/07B/10B/-ZB

Critical Speed of Shaft

1: No support bearing required

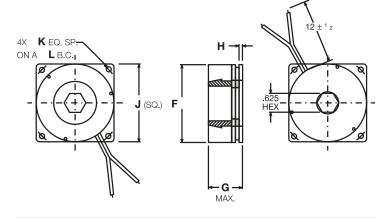
2: Support bearing required for DSP-05B and DSP-06B

3: Support bearing always required

Gears and Transmission Kits

DSP Intermediate Shafts, compatibility table

Unit	Drive type	DSP-05B	DSP-06B	DSP-07B	DSP-10B	DSPZB	DSP-TBS
M50	belt	•					
M55	belt		•				
M75	belt			•			
M100	belt				•		
ZB	belt					•	
M55	screw						•
M75	screw						•
M100	screw						•

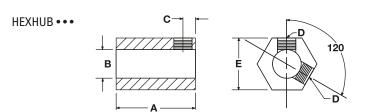

DSP Intermediate Shafts, ordering key						
	1	2				
Example	DSP-06B	-305				
DSP-05B = fc $DSP-06B = fc$ $DSP-07B = fc$ $DSP-10B = fc$ $DSP-10B = fc$	ate shaft size and type or belt driven M50 units or belt driven M55 units or belt driven M75 units or belt driven M100 units or belt driven ZB units for screw driven M55, M75 or M100 units with TBS worm gear	2. C/C distance between units in cm (Lm) - xxx = length in cm				

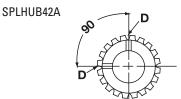
Gears and Transmission Kits

Spring Set Brake

Unit turns	Nema Static torque			Supply voltage Dimensions [in]					Brake	Brake			
Unit type p/n		size	[lbf-in]	[VDC]	F	G	H	J	К	L	HEX	hub p/n¹	adaptor p/n
2DB08	TEB23A	23	NEMA 23	24	2.25	1.10	0.11	2.25	0.22	2.625	5/8	HEXHUB23A	MB08-23
2DB12	TEB23B	23	NEMA 23	24	2.25	1.10	0.11	2.25	0.22	2.625	5/8	HEXHUB23B	none required
2HB10, 2RB12	TEB23D	23	NEMA 23	24	2.25	1.10	0.11	2.25	0.22	2.625	5/8	HEXHUB23D	none required
2RB16	TEB23E	23	NEMA 23	24	2.25	1.10	0.11	2.25	0.22	2.625	5/8	HEXHUB23E	none required
2DB16	TEB34A	34	NEMA 34	24	2.25	1.10	0.11	3.25	0.22	3.875	5/8	HEXHUB34A	none required
2HB20	TEB34C	34	NEMA 34	24	2.25	1.31	0.11	3.25	0.22	3.875	7/8	HEXHUB34A	none required

¹ Hub included in spring set brake

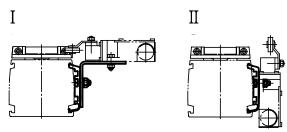



Mounts to support end of 2HB, 2RB, and 2DB units. The brake engages upon loss of power and provides resistance to back drive rotation of ball screws due to gravitational forces when power is interrupted to the brake unit. They are pre-burnished for maximum torque capacity and come with standard NEMA 23, 34 or 42 mounting patterns for easy field retrofit. Compact size minimizes change to the overall system envelope. The 2HB, 2RB, and 2DB ordering keys can be configured with the brake as part of the assembly. See ordering keys or www.LinearMotioneering.com for details. The part numbers listed here are for the brake parts as separate items.

Spring Set Brake Hubs

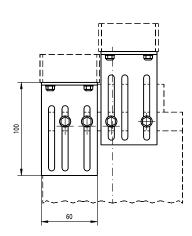
Droke tune		Unittune	Set screw torque	Dimensions [in (mm)]					
Brake type	p/n	Unit type	[in-lb] ¹	Α	В	C	D	E	
TEB23A	HEXHUB23A	2DB08	36	1.53	3/16	0.15	#10/32	5/8	
TEB23B	HEXHUB23B	2DB12	36	1.31	1/4	0.26	#10/32	5/8	
TEB23D	HEXHUB23D	2HB10, 2RB12	36	(20)	(8)	(5)	M4	5/8	
TEB23E	HEXHUB23E	2RB16	36	(20)	(20)	(5)	M4	5/8	
TEB34A	HEXHUB34A	2DB16	36	1.67	3/8	0.44	#10/32	5/8	
TEB34C	HEXHUB34A	2HB20	36	(32)	14	(6)	M5	7/8	

¹ It is suggested a serviceable thread locking compound be used.



Electrical Feedback Devices

Limit Switch Brackets¹


Unit type	I	For limit switch type	П	For limit switch type
M50	D393 035	ZCM-D21	-	-
M55	D313 427	ZCM-D21	D313 428	ZCM-D21
M75	D312 860	XCK-M115	D312 861	XCK-M115
M100	D312 330	XCK-M115	D312 331	XCK-M115

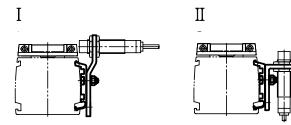
¹ No limit switches included in the shipment.

Limit Switch Brackets for Z3

Unit type	p/n	For limit switch type
Z3	D800 042	XCK-M115

The limit switch brackets are adjustable in height. The limit switches on the brackets are operated by the maximum extended and maximum retracted end of stroke bars on top of the Z3 units. Two brackets are required.

Limit Switches


Switch type	p/n	Protection degree	Contacts	Cable
XCK-M115	D535 107	IP67	NO + NC	-
ZCM-D21	D535 102	IP67	NO + NC	1 meter

Electrical Feedback Devices

Sensor Brackets for Cylindrical Sensors¹

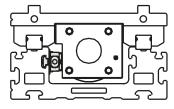
Unit type	I	For sensor diameter	П	For sensor diameter
M55	D313 429	M12	D313 430	M12
M75	D312 862	M18	D312 863	M18
M100	D312 332	M18	D312 333	M18

¹ no sensors included in the shipment

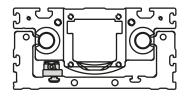
Cylindrical Inductive Sensors Sensor type p/n Diameter Input voltage Max. current **Protection degree Contacts** Cable PNP D535 085 12 - 48 Vdc IP67 NO M12 0,2 A connector M18 0,2 A PNP D535 089 12 - 48 Vdc IP67 NO connector

Cylindrical Inductive Sensor Connectors

For sensor diameter	p/n
M12	D535 092
M18	D535 091


Electrical Feedback Devices

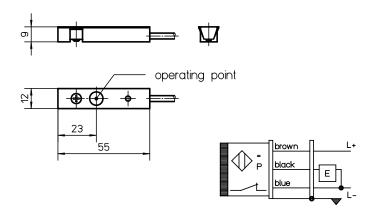
Sensor Packages


Unit type	Package type	p/n	Output type	Output operation	Frequency ¹	Supply voltage [VDC]	Cable length [m]	Sdetract [mm]
	One home	LSP2HBM10-N-1	NPN	NO	$1 \times V$	12 - 24	5	-
	sensor	LSP2HBM10-P-1	PNP	NO	$1 \times V$	12 - 24	5	-
2HB10	Two limit	LSP2HBM10-N-2	NPN	NC	$2 \times S$	12 - 24	5	30
20010	switch sensors	LSP2HBM10-P-2	PNP	NC	$2 \times S$	12 - 24	5	30
	One home and two	LSP2HBM10-N-3	NPN	$1 \times NC$, $2 \times NO$	$1 \times V$, $2 \times S$	12 - 24	5	30
	limit switch sensors	LSP2HBM10-P-3	PNP	$1 \times NC$, $2 \times NO$	$1 \times V$, $2 \times S$	12 - 24	5	30
	One home	LSP2HBM20-N-1	NPN	NO	$1 \times V$	12 - 24	5	-
	sensor	LSP2HBM20-P-1	PNP	NO	$1 \times V$	12 - 24	5	-
2HB20	Two limit	LSP2HBM20-N-2	NPN	NC	$2 \times S$	12 - 24	5	30
ZHDZU	switch sensors	LSP2HBM20-P-2	PNP	NC	$2 \times S$	12 - 24	5	30
	One home and two	LSP2HBM20-N-3	NPN	$1 \times NC$, $2 \times NO$	$1 \times V$, $2 \times S$	12 - 24	5	30
	limit switch sensors	LSP2HBM20-P-3	PNP	$1 \times NC$, $2 \times NO$	$1 \times V$, $2 \times S$	12 - 24	5	30
	One home	LSP2RM12-N-1	NPN	NO	$1 \times V$	12 - 24	5	-
	sensor	LSP2RM12-P-1	PNP	NO	$1 \times V$	12 - 24	5	-
20012	Two limit	LSP2RM12-N-2	NPN	NC	$2 \times S$	12 - 24	5	35
2RB12	switch sensors	LSP2RM12-P-2	PNP	NC	$2 \times S$	12 - 24	5	35
	Home and limit switch	LSP2RM12-N-3	NPN	$1 \times NC, 2 \times NO$	$1 \times V$, $2 \times S$	12 - 24	5	35
	sensors	LSP2RM12-P-3	PNP	$1 \times NC$, $2 \times NO$	$1 \times V$, $2 \times S$	12 - 24	5	35
	One home	LSP2RM16-N-1	NPN	NO	$1 \times V$	12 - 24	5	-
	sensor	LSP2RM16-P-1	PNP	NO	$1 \times V$	12 - 24	5	-
20010	Two limit	LSP2RM16-N-2	NPN	NC	$2 \times S$	12 - 24	5	35
2RB16	switch sensors	LSP2RM16-P-2	PNP	NC	2 × S	12 - 24	5	35
	One home and two	LSP2RM16-N-3	NPN	$1 \times NC$, $2 \times NO$	$1 \times V$, $2 \times S$	12 - 24	5	35
	limit switch sensors	LSP2RM16-P-3	PNP	$1 \times NC$, $2 \times NO$	$1 \times V$, $2 \times S$	12 - 24	5	35

 1 V = varied frequency. S = standard frequency.

LIMIT SWITCH POSITION 2HBE

LIMIT SWITCH POSITION 2RB

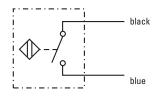

Each 2HB and 2RB can be equipped with sensors inside of the profile where they are protected from mechanical damage. The systems are provided with access holes on each side of each end plate for passage of the sensor package cable. Using limit switch sensors will reduce the effective stroke. The standard position will approximately reduce the stroke by the distance listed in the Sdetract column. The 2HB, 2RB, 2HE and 2RE ordering keys can be configured with the limit switches and/or a home sensor as part of the assembly. See ordering keys or www.LinearMotioneering.com for details. The part numbers listed above are for the limit switches and/or home sensors as separate items.

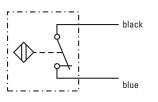
Accessories Electrical Feedback Devices

EN2 Inductive Sensors, part numbers

Sensor type	Cable length [m]	p/n
Normally closed	2	671 545 0305
Normally open	2	671 545 0304
Normally closed	10	671 545 0307
Normally open	10	671 545 0306

To be able to mount the EN2 inductive sensors on a unit the ENT14x16 sensor rail is required (see page 178) except for units WM120 and WV120 where they can be fitted directly to the profile of the unit.

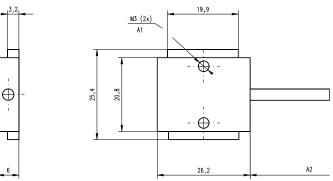



EN2 Inductive Sensors, data

Parameter		EN2
Supply voltage	[Vdc]	10 - 30
Max. load current	[A]	0,2
Operating distance	[mm)	2
LED indicator for switch		yes
Protection class		IP67
Cable type		screened
Weight with cable L = 2 m with cable L= 10 m	[kg]	0,04 0,19

Magnetic Sensors, data

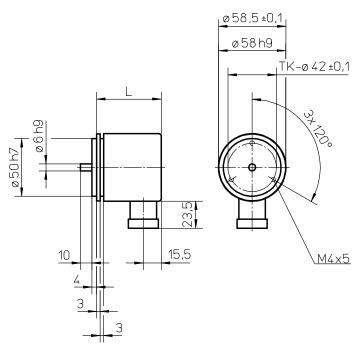
Parameter		
Max. power	[W]	10
Max. voltage	[Vdc]	100
Max. current	[A]	0,5
LED indicator for switch		no
Protection class		IP67
Cable length	[m]	3
Cable cross section	[mm ²]	2 × 0,15
Operating temperature limits	[°C]	-25 - 65
Weight	[kg]	0,050



Magnetic Sensors, part numbers

Sensor type	suitable units	p/n
Normally closed	M50, Z2, Z3	D535 071
Normally open	M50, Z2, Z3	D535 070

On M50 the magnetic sensors are mounted directly in the sensor slot of the profiles of the units and require no mounting bracket while Z2 and Z3 require magnetic sensor mounting brackets. The sensor is fixed in position by two M3 size locking screws (A1). The cable (A2) is molded into the sensor.


www.thomsonlinear.com

Electrical Feedback Devices

IG602 Encoders, data

	IG602
[Vdc]	5 ±10% 10 - 30
	line driver push-pull
[ppr]	100 — 2500 100 — 600
[mm]	51,5 56,0
[kg]	0,36 0,36
	[ppr] [mm]

The IG602 encoders come with mounting screws but no coupling or connector. To be able to mount the encoder to the unit, the unit must have a shaft for encoders. See the ordering keys of the units. The encoders can also be ordered mounted to the unit from factory. See ADG encoder option kit on page 170.

IG602 Encoders, part numbers

Encoder type	Supply voltage [Vdc)	Pulses per revolution	p/n
Туре 1	5	100	671 521 0194
Туре 1	5	200	671 521 0195
Туре 1	5	500	671 521 0196
Туре 1	5	600	671 521 0197
Туре 1	5	1000	671 521 0198
Туре 1	5	1250	671 521 0199
Туре 1	5	1500	671 521 0200
Туре 1	5	2000	671 521 0192
Туре 1	5	2500	671 521 0201
Type 2	10 - 30	100	671 521 0193
Type 2	10 - 30	200	671 521 0202
Type 2	10 - 30	500	671 521 0203
Type 2	10 - 30	600	671 521 0204
Type 2	10 – 30	600	

STE001 Encoder Connector, data

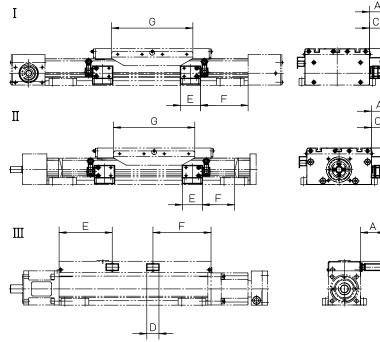
Parameter		STE001
Number of poles		12
Protection class		IP67
Execution		jack
Cable entrance		straight
Weight [[kg]	0,04
Part number		6715600153

Encoder Cable, data

Parameter	p/n
5 m cable length	671 555 0068
10 m cable length	671 555 0069

The encoder cables come fitted with a STE001 encoder connector in one of the ends.

THOMSON Linear Motion. Optimized."

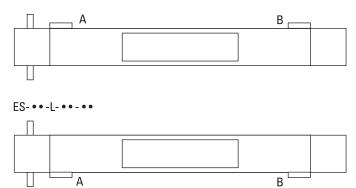

Accessories

Electrical Feedback Devices

ES Limit Switch Option Kit

		-								
Unit type	I	П		А	В	C	D	E	F	G
WH50 ¹	•			34	60,5	10	26	49	58,5	196
WH80	•			31	76	10	39	49	78,5	196
WH120	•			34	88	10	51	49	78,5	196
WHZ50	•			34	61	10	26	49	58,5	196
WHZ80	•			31	76	10	39	49	78,5	196
WM60		•		40	69	32	38	50	63	200
WM80		•		40	73	32	42	50	79	200
WM120		•		40	89	32	58	50	94	200
WM60Z	•			40	69	32	38	50	73	200
WM80Z ²	•			40	73	32	42	50	99 (89)	200
WV60		•		40	69	32	38	50	33	200
WV80		•		40	73	32	42	50	39	200
WV120		•		40	89	32	58	50	59	200
MLSM60D		•		40	73	32	32	50	79	200
MLSH60Z	•			40	73	32	42	50	79	200
MLSM80D		•		40	85	32	54	50	101	200
MLSM80Z		•		40	85	32	54	50	101	200
WZ60 ¹			•	60	22,5	16	30	113	53	-
WZ80 ¹			•	60	22,5	16	30	112	84	-

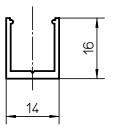
¹ Limit switches for these units can not be moved. On all other units the switches can be re-positioned by the customer. ² Value in brackets = for short carriage.



The ES limit switch assembly is an option that is mounted at the factory. The limit switches are placed 10 mm from the mechanical ends of the unit. Each limit switch has one NO and one NC contact with positive opening action. Protection degree is IP67. Type I and II switches can be repositioned along the profile by the customer. Note! The ES limit switch option and any of the sensor rail options ENT14x16, ENF14x16 or ENK can not be mounted on the same side of the unit.

Electrical Feedback Devices

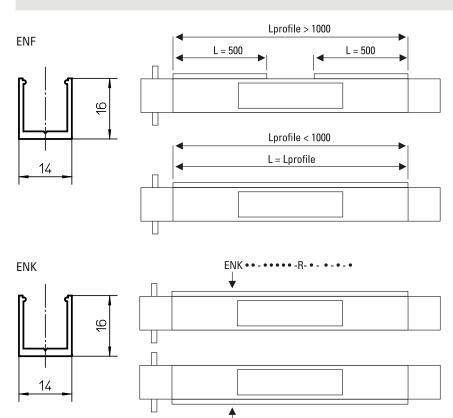
ES Limit Switch Option Kit, ordering key								
	1	2		3	4			
Example	ESK07	-L		-01	-10			
1. Compatibl ESK02 = WH ESK03 = WH ESK04 = WH ESK05 = WW ESK06 = WW ESK07 = WW ESK07 = WW ESK09 = WW ESK10 = WW ESK10 = WW ESK11 = WV ESK12 = WH ESK13 = WH ESK13 = WH ESK14 = WZ ESK15 = WZ ESK16 = ML ESK18 = ML ESK19 = ML	50 80 120 40 60 / WM60Z 80 / WM80Z 1120 50 50 50 50 50 50 50 50 50 5	-	-L = lef -R = rig 3. Swit -00 = n -01 = su -10 = su -10 = su -10 = su -01 = su -01 = su -05 = su	unting side of the unit it side ght side tch configuration on side A o switch on side A witch with 1 m cable witch with 5 m cable witch with 10 m cable tch configuration on side B o switch on side B witch with 1 m cable witch with 1 m cable witch with 1 m cable				


ES-••-R-••-••

Electrical Feedback Devices

ENT14x16 Inductive Sensor Rail

Unit type	p/n
WH40 / WH50 / WH80 / WH120 / WHZ50 / WHZ80 / WM40 / WM60 / WM80 / WM60Z / WM80Z / WV60 / WV80 / MLSM60D / MLSH60Z / MLSM80Z / WZ60 / WZ80 / WB40 / WB60	671 545 0283



The ENT14x16 inductive sensor rail is mounted to the side of a unit or along any type of beam or profile. Sensors of type EN2 can be mounted in the rail. The rail can also serve as a cable duct for the sensor cables. The rail is sealed with a cover which comes with the rail. The rail comes in lengths of max 3000 mm. Drilling in the profile of the unit is required when mounting the rail. When ordering, specify part number and length of the rail. Note1! WM120 and WV120 units do not require any rail as the EN2 sensors can be fitted directly to the profile of the units. Note2! ES limit switch option and ENT14x16 rail can not be mounted on the same side of the unit.

ENF and ENK Inductive Sensor Rail Option Kit, compatibility table

Unit type

WH40 / WH50 / WH80 / WH120 / WHZ50 / WHZ80 / WM40 / WM60 / WM80 / WM60Z / WM80Z / WV60 / WV80 / MLSM60D / MLSM60D / MLSH60Z / MLSM80Z / WZ60 / WZ80 / WB40 / WB60 / M50 / M75 / M100

ENK ••- •• •• -L- •- •- •-

The ENF and ENK inductive sensor rail option kits are mounted at the factory. The ENF option consists of two 500 mm long ENT14x16 sensor rails mounted in each end of the unit on the left or right side of the profile. In cases where the unit is too short to allow two 500 mm sensor rails to be mounted, then one rail is mounted along the entire profile of the unit. The ENK option also consists of ENT14 x16 sensor rails but the ENK option has sensor profiles that run along the entire profile of the unit. In the shipment of both ENF and ENK the specified amount and type of EN2 sensors are included. The sensors are fitted to the sensor rail by the customer at the desired positions.

ENF / ENK

Note1! WM120 and WV120 units do not require any ENF or ENK options as the EN2 sensors can be fitted directly to the profile of the units.

Note2! The ES limit switch option and ENF rail can not be mounted on the same side of the unit.

Note3! Movopart M50/75/100 units require adapter plates for mounting the ENF/ENK to the profile. See page 135 for adapter plate dimensions.

Electrical Feedback Devices

ENK and ENF Inductive Sensor Rail Option Kit, ordering key

	1	2	3	4	5	6	7	8
Example	ENK16	-S	-04000	-R	-2	-0	-1	-6

1. Type of rail and compatible unit	
ENK01 = ENK rail for WH40	ENF01 = ENF rail for WH40
ENK02 = ENK rail for WH50	ENF02 = ENF rail for WH50
ENK03 = ENK rail for WH80	ENF03 = ENF rail for WH80
ENK04 = ENK rail for WH120	ENF04 = ENF rail for WH120
ENK05 = ENK rail for WM40	ENF05 = ENF rail for WM40
ENK06 = ENK rail for WM60 / WV60	ENF06 = ENF rail for WM60 / WV60
ENK07 = ENK rail for WM80 / WV80	ENF07 = ENF rail for WM80 / WV80
ENK08 = ENK rail for WM120 / WV120	ENF08 = ENF rail for WM120 / WV120
ENK09 = ENK rail for WM60Z	ENF09 = ENF rail for WM60Z
ENK10 = ENK rail for WM80Z	ENF10 = ENF rail for WM80Z
ENK11 = ENK rail for WHZ50	ENF11 = ENF rail for WHZ50
ENK12 = ENK rail for WHZ80	ENF12= ENF rail for WHZ80
ENK13 = ENK rail for WZ60	ENF13 = ENF rail for WZ60
ENK14 = ENK rail for WZ80	ENF14 = ENF rail for WZ80
ENK15 = ENK rail for MLSH60Z	ENF15 = ENF rail for MLSH60Z
ENK17 = ENK rail for MLSM80Z	ENF17 = ENF rail for MLSM80Z
ENK18 = ENK rail for MLSM60D	ENF18 = ENF rail for MLSM60D
ENK19 = ENK rail for MLSM80D	ENF19 = ENF rail for MLSM80D
ENK20 = ENK rail for WB40	ENF20 = ENF rail for WB40
ENK21 = ENK rail for WB60	ENF21 = ENF rail for WB60
ENK28 = ENK rail for MF/MG07K	ENF28 = ENF rail for MF/MG07K
ENK29 = ENK rail for MF/MG06K	ENF29 = ENF rail for MF/MG06K
ENK30 = ENK rail for MF/MG06B	ENF30 = ENF rail for MF/MG06B
ENK31 = ENK rail for MF/MG07B	ENF31 = ENF rail for MF/MG07B
ENK32 = ENK rail for MF/MG10K	ENF32 = ENF rail for MF/MG10K
ENK33 = ENK rail for MF/MG10B	ENF33 = ENF rail for MF/MG10B

2. Number of carriages

- -S = single carriage
- -D = double carriages

3. Total length of unit (L tot)

- vvvvv = distance in mm

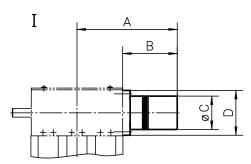
4. Mounting side of the unit -L = left side -R = right side

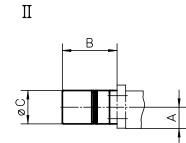
5. Number of EN2 sensors with NC contact and 2 m cable - w = 0 - 9 sensors / normally closed / 2 m cable

6. Number of EN2 sensors with NO contact and 2 m cable -x = 0 - 9 sensors / normally open / 2 m cable

7. Number of EN2 sensors with NC contact and 10 m cable -y = 0 - 9 sensors / normally closed / 10 m cable

8. Number of EN2 sensors with NO contact and 10 m cable - z = 0 - 9 sensors / normally open / 10 m cable


THOMSON Linear Motion. Optimized."


Accessories

Electrical Feedback Devices

ADG Encoder Option Kit

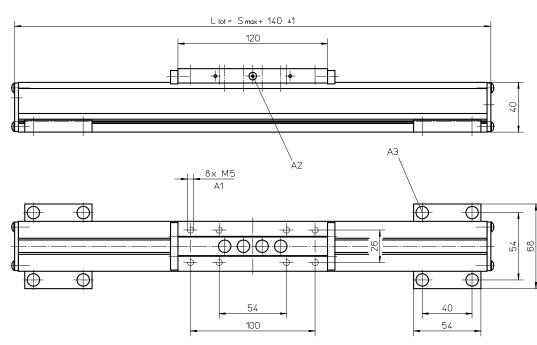
	•					
Unit type	Mounting type I	Mounting type II	Α	В	øC	D
WH40	•		115	95	58,5	ø60
WH50 / WHZ50	•		120	96	58,5	50 × 50
WH80 / WHZ80	•		139	100	58,5	90 × 90
WH120	•		153	93	58,5	100 × 100
WM40		•	25	95	58,5	-
WM60		•	31	95	58,5	-
WM80		•	40	95	58,5	-
WM120		•	74	95	58,5	-
WM60Z	•		124	94	58,5	60 × 60
WM80Z	•		138	98	58,5	65 × 65
WB40		•	20,8	95	58,5	-
WB60		•	32,5	95	58,5	-
MLSM60D		•	37	95	58,5	-
MLSM80D		•	46	95	58,5	-
MLSH60Z	•		174,5	95	58,5	78 × 59
MLSM80Z	•		214,5	95	58,5	100 × 80

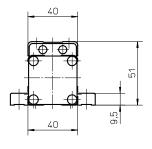
The ADG encoder option kit is an option that is mounted to the unit at the factory. It includes an IG602 encoder, a STE001 encoder connector and an encoder mounting flange with coupling. Cable can also be supplied in 5 or 10 meter lengths.

Electrical Feedback Devices

ADG E	ADG Encoder Option Kit, ordering key							
	1		2	3				
Example	ADG-08	-05	-0600	-00				
1. Compatibl ADG-01 = WI ADG-02 = WI ADG-03 = WI ADG-04 = WI ADG-05 = WI ADG-06 = WI ADG-07 = WI ADG-09 = WI ADG-09 = WI ADG-10 = WI ADG-11 = MI ADG-13 = MI ADG-14 = MI ADG-15 = MI ADG-15 = WI	H40 H50 / WHZ50 H80 / WHZ80 H120 M40 M60 / WV60 M80 / WV80 M120 / WV120 M60Z M80Z LSH60Z LSM80Z LSM60D LSM80D B40	-05-0 -05-0 -05-0 -05-2 -05-2 -05-2 -05-2 -24-0 -24-0 -24-0 -24-0 -24-0 -24-0 -24-0 -24-0 -24-0 -24-0 -24-0 -24-0 -24-0		s per revolution s per revolution s per revolution es per revolution es per revolution es per revolution es per revolution pulses per revolution pulses per revolution pulses per revolution pulses per revolution				

Non-driven Linear Motion Systems

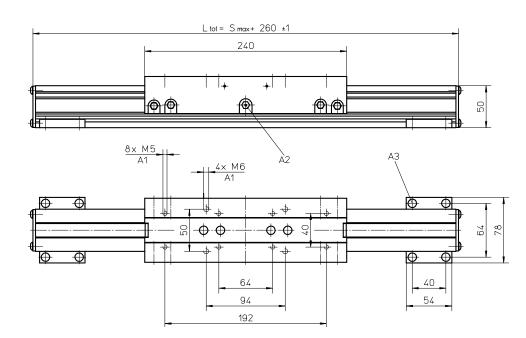

Dimensions	Projection	Online Sizing & Selection!
METRIC	=	www.LinearMotioneer

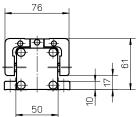

» Ordering key - see page 211

» Technical data - see page 78

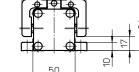
tioneering.com

WH40N




A1: depth 10 A2: lubricating nipple on both sides DIN3405 D 1/A A3: socket cap screw ISO4762-M5×12 8.8

» Ordering key - see page 211


» Technical data - see page 106

WH50N

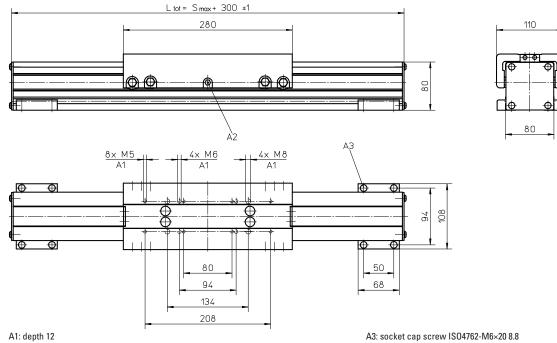
A3: socket cap screw ISO4762-M5×12 8.8

A1: depth 10

69

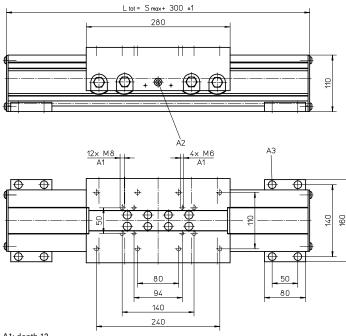
5

Accessories

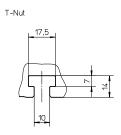

Non-driven Linear Motion Systems

Dimensions	Projection	Online Sizing & Selection!
METRIC		www.LinearMotioneering.com

WH80N



- » Ordering key see page 211
- » Technical data see page 108


A2: funnel type lubricating nipple DIN3405-M6×1-D1

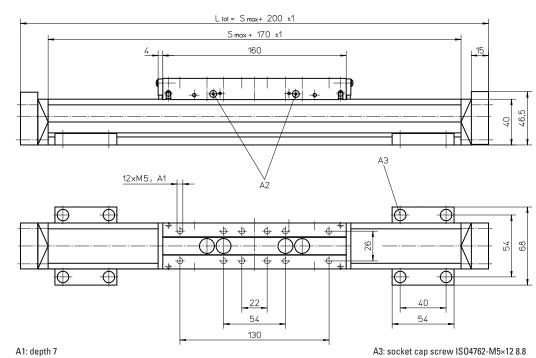
WH120N

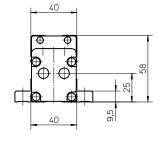
A1: depth 12 A2: funnel type lubricating nipple DIN3405-M6×1-D1

- » Ordering key see page 211 » Technical data - see page 110

A3: socket cap screw ISO4762-M8×20 8.8

Non-driven Linear Motion Systems

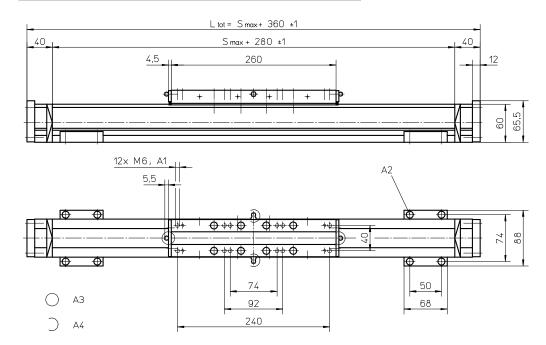

Dimensions	Projection	Online Sizing & Selection!
METRIC		www.LinearMotioneer

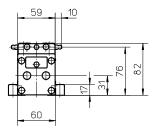

» Ordering key - see page 211

» Technical data - see page 14

neering.com

WM40N





A1: depth 7 A2: lubricating nipple on both sides DIN3405 D 1/A

WM60N

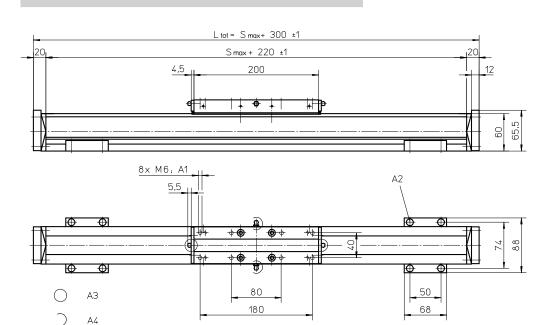
» Ordering key - see page 211 » Technical data - see page 18

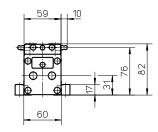
A1: depth 11 A2: socket cap screw ISO4762-M6×20 8.8 A3: tapered lubricating nipple to DIN71412 AM6 A4: can be changed over to one of the three alternative lubricating points by the customer

www.LinearMotioneering.com

Accessories

Non-driven Linear Motion Systems

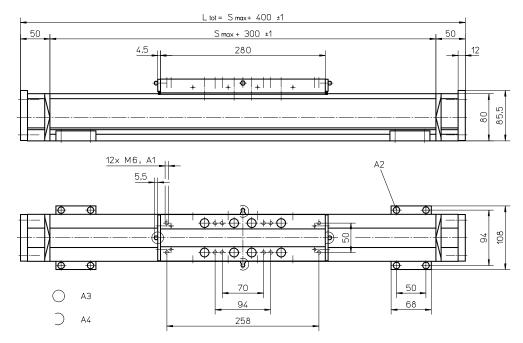

WM60N with Single Short Carriage

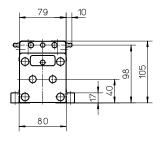

» Ordering key - see page 211 » Technical data - see page 20

METRIC

Dimensions Projection Online Sizing & Selection!

 $-\Box$


A1: depth 11 A2: socket cap screw ISO4762-M6×20 8.8


A3: tapered lubricating nipple to DIN71412 AM6 A4: can be changed over to one of the three alternative lubricating points by the customer

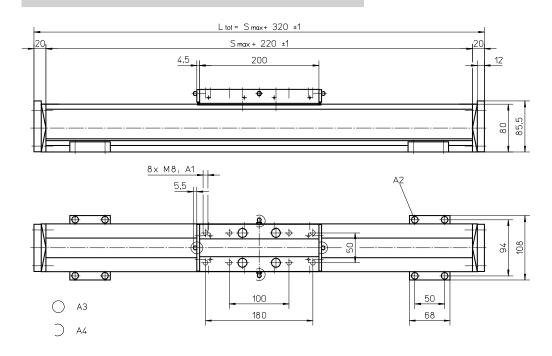
WM80N

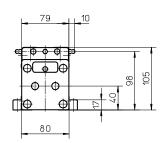
» Ordering key - see page 211

» Technical data - see page 24

A1: depth 12 A2: socket cap screw ISO4762-M6×20 8.8 A3: tapered lubricating nipple to DIN71412 AM6

A4: can be changed over to one of the three alternative lubricating points by the customer

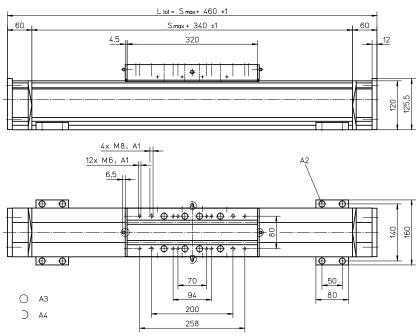

Projection Online Sizing & Selection! Dimensions METRIC $-\Box$

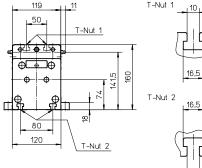

www.LinearMotioneering.com

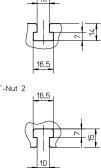
Non-driven Linear Motion Systems

WM80N with Single Short Carriage

» Ordering key - see page 211 » Technical data - see page 26


A1: depth 12 A2: socket cap screw ISO4762-M6×20 8.8

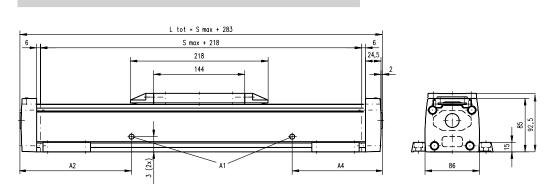

WM120N

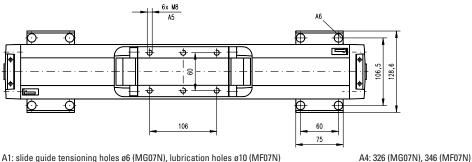

A3: tapered lubricating nipple to DIN71412 AM6 A4: can be changed over to one of the three alternative lubricating points by the customer

» Ordering key - see page 211

» Technical data - see page 34

A3: tapered lubricating nipple to DIN71412 M8×1 A4: can be changed over to one of the three alternative lubricating points by the customer

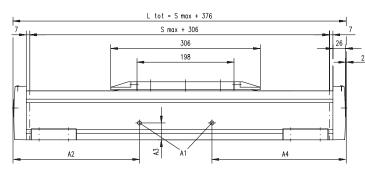

M75N

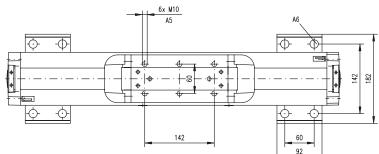

Non-driven Linear Motion Systems

Dimensions	Projection	Online Sizing & Selection!
METRIC	\ominus	www.LinearMotioneering.com

» Ordering key - see page 212

» Technical data - see page 42

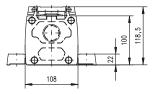




A1: slide guide tensioning holes ø6 (MG07N), lubrication holes ø10 (MF07N) A2: 177 (MG07N), 127 (MF07N)

A3: 24 (MG07N), 43 (MF07N)

M100N

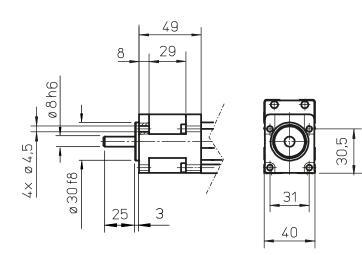


A1: slide guide tensioning holes ø6 (MG10N), ø10 (MF10N) A2: 127,5 if Ltot <=1055mm, 227,5 if Ltot > 1055mm (MG10N), 292,5 (MF10N) A3: 34,5 (MG10N), 56,5 (MF10N)

A5: depth 8 Heli coil A6: ø13,5 / ø 8,5 for socket head cap screw M8

» Ordering key - see page 212

» Technical data - see page 44


A4: 127,5 if Ltot <= 1055mm, 377,5 if Ltot > 1055mm (MG10N), 292,5 if Ltot => 755mm, no hole if Ltot < 755mm (MF10N) A5: depth 10 Heli coil

A6: ø17 / ø 10,5 for socket head cap screw M10

Non-RediMount Linear Motion Systems

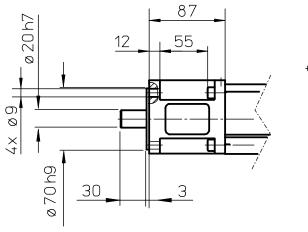
WM40

WM60, WV60

- » Ordering key see page 193, 194 » Technical data - see page 18 - 23, 30

Dimensions	Projection	Online Sizing & Selection!
METRIC		www.LinearMotioneering.com

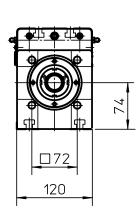
» Ordering key - see page 193


» Technical data - see page 4 - 17

www.LinearMotioneering.com

Accessories


Non-R ar Motion Systems


WM80, WV80

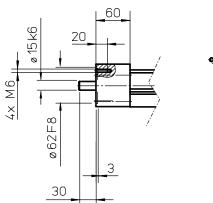
WM120, WV120

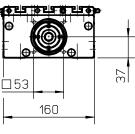
- » Ordering key see page 193. 194
- » Technical data see page 28, 32

Red	iΜ	lou	nt	Lin	ea

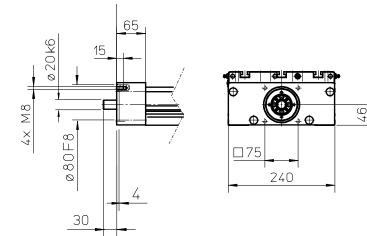
» Ordering key - see page 193, 194

METRIC


» Technical data - see page 24 - 27, 32


Dimensions Projection Online Sizing & Selection!

Non-RediMount Linear Motion Systems


MLSM60D

MLSM80D

- » Ordering key see page 195
- » Technical data see page 38

Dimensions	Projection	Online Sizing & Selection!
METRIC	\square	www.LinearMotioneering.com

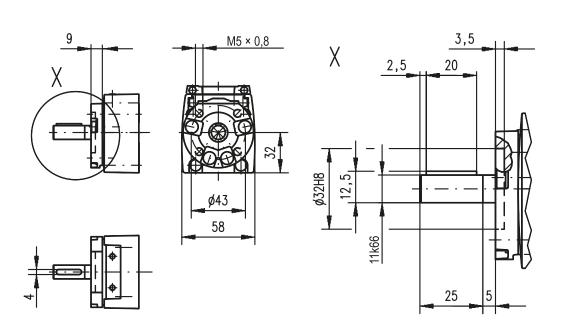
- » Ordering key see page 195
- » Technical data see page 36

www.LinearMotioneering.com

Accessories

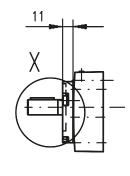
Non-RediMount Linear Motion Systems

M55 with ball screw drive

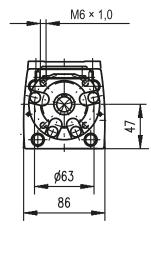

» Ordering key - see page 196, 201

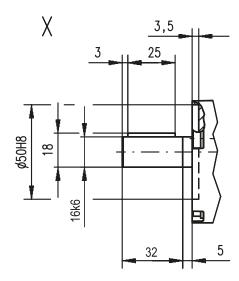
METRIC

Dimensions Projection Online Sizing & Selection!


 $-\Box$

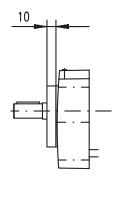
» Technical data - see page 40, 70

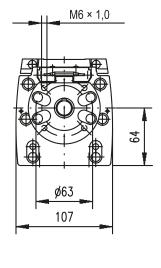


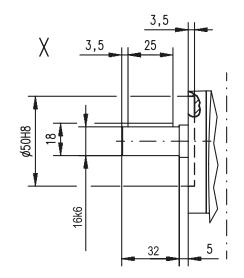

M75 with ball screw drive

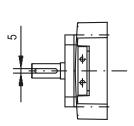
- » Ordering key see page 196, 201
- » Technical data see page 42, 72

5

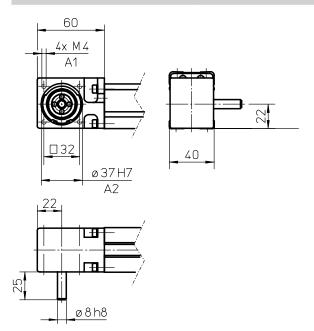






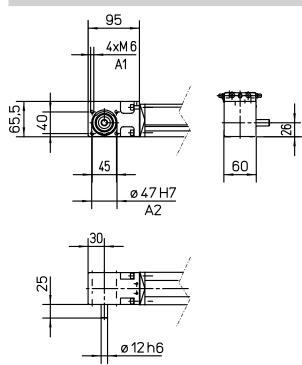

Non-RediMount Linear Motion Systems

M100 with ball screw drive



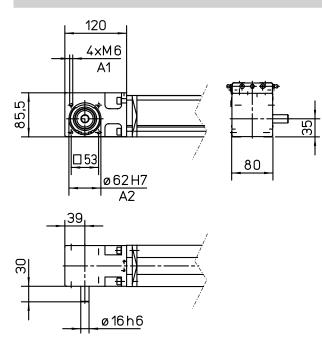
WH40

A1: depth 10 A2: depth 3


Dimensions	Projection	Online Sizing & Selection!
METRIC	=	www.LinearMotioneering.com

- » Ordering key see page 196, 201
- » Technical data see page 44, 74

- » Ordering key see page 202
- » Technical data see page 78


Non-RediMount Linear Motion Systems

WM60Z

A1: depth 15 A2: depth 4

WM80Z

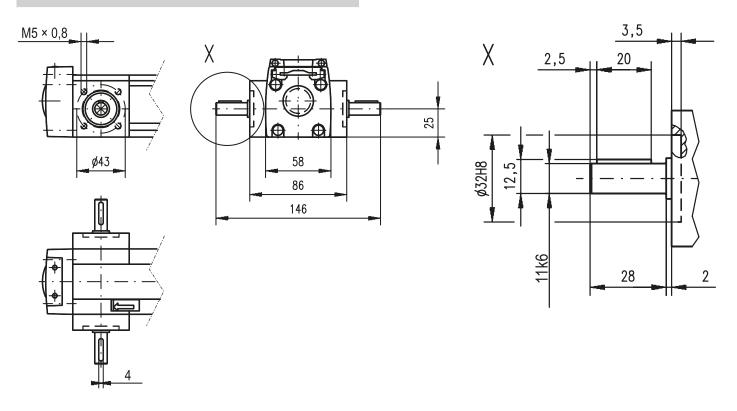
A1: depth 15 A2: depth 2,5

www.thomsonlinear.com

Dimensions	Projection	Online Sizing & Selection!
METRIC	\square	www.LinearMotioneering.com

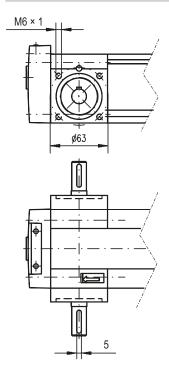
- » Ordering key see page 203
- » Technical data see page 80

- » Ordering key see page 203
- » Technical data see page 82

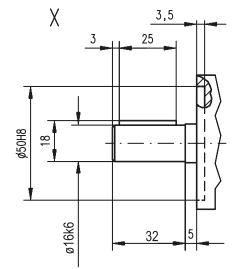


Non-RediMount Linear Motion Systems

M55 with belt drive

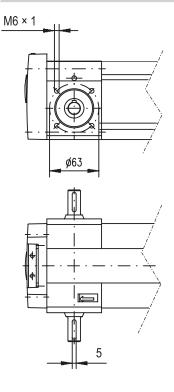


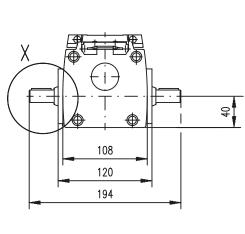

- » Ordering key see page 204, 206
- » Technical data see page 86, 98

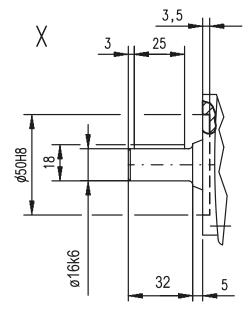


M75 with belt drive

» Ordering key - see page 204, 206 » Technical data - see page 88, 100





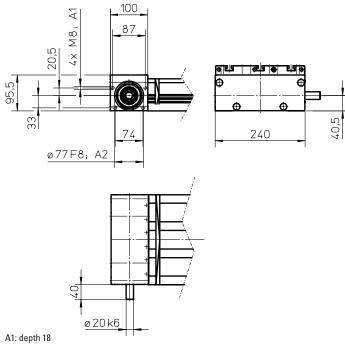


Non-RediMount Linear Motion Systems

M100 with belt drive

www.LinearMotioneering.com

Dimensions Projection Online Sizing & Selection!


» Ordering key - see page 204, 206

» Technical data - see page 90, 102

METRIC

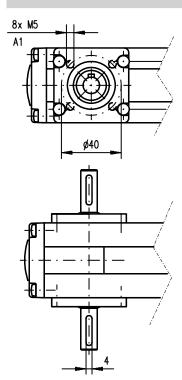
MLSM80Z

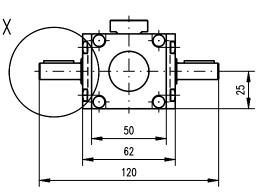
- » Ordering key see page 205
- » Technical data see page 92

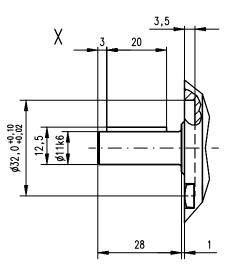
www.thomsonlinear.com

M50

Accessories

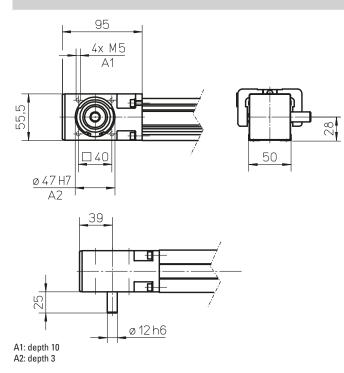

Non-RediMount Linear Motion Systems


Dimensions	Projection	Online Sizing 8
METRIC		www.Linear

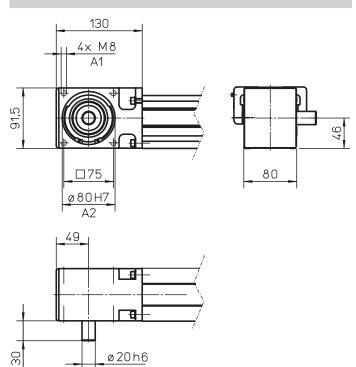

Online Sizing & Selection!

www.LinearMotioneering.com

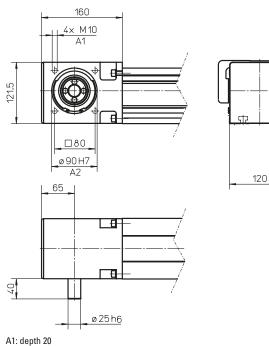
- » Ordering key see page 206
- » Technical data see page 96



A1: depth 8,5


WH50

- » Ordering key see page 207
- » Technical data see page 106


Non-RediMount Linear Motion Systems

WH80

A1: depth 16 A2: depth 2,5

WH120

A1: depth 20 A2: depth 7

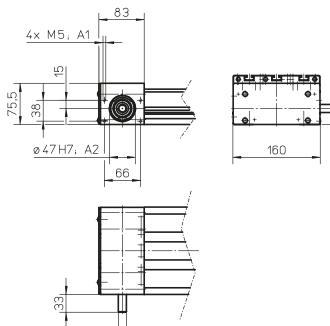
www.thomsonlinear.com

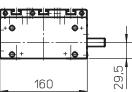
- Dimensions
 Projection
 Online Sizing & Selection!

 METRIC
 Image: Comparison of the sector of the sector
- » Ordering key see page 207
- » Technical data see page 108

» Ordering key - see page 207

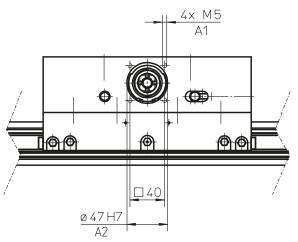
65

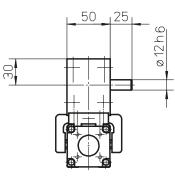

¢,


» Technical data - see page 110

Non-RediMount Linear Motion Systems

MLSH60Z



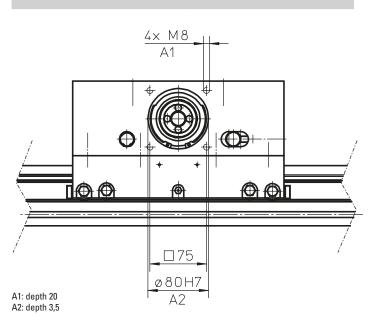

A1: depth 10 A2: depth 4

WHZ50

ø15h6

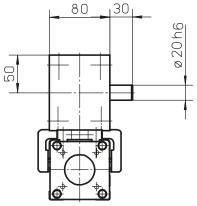
» Ordering key - see page 209 » Technical data - see page 116

A1: depth 12 A2: depth 3,5


Dimensions Projection Online Sizing & Selection! METRIC \square www.LinearMotioneering.com

» Ordering key - see page 208

» Technical data - see page 112


Non-RediMount Linear Motion Systems

WHZ80

- Dimensions
 Projection
 Online Sizing & Selection!

 METRIC
 Image: Compare the selection of the selectio
- » Ordering key see page 209
- » Technical data see page 118

Linear Motion Systems with Lead or Ball Screw Drive and Ball Guides

Technical Data

Parameter		WM40S	WM40D	WM60D	WM60S	WM60X	WM80D	WM80S	WM120D
Geometrical moment of inertia of the profile (ly)	[mm ⁴]	10,8 × 10 ⁴	10,8 × 10 ⁴	5,8 × 10 ⁵	5,8 × 10 ⁵	5,8 × 10 ⁵	1,85 × 10 ⁶	1,85 × 10 ⁶	7,7 × 10 ⁶
Geometrical moment of inertia of the profile (Iz)	[mm ⁴]	13,4 × 10 ⁴	13,4 × 104	5,9 × 10 ⁵	5,9 × 105	5,9 × 105	1,94 × 10 ⁶	1,94 × 10 ⁶	9,4 × 10 ⁶
Friction factor of the guide system (μ)		0,05	0,05	0,1	0,1	0,1	0,1	0,1	0,1
Efficiency of the unit		0,8	0,8	0,8	0,8	0,8	0,8	0,8	0,8
Bending factor (b)		0,0003	0,0003	0,0003	0,0003	0,0003	0,0003	0,0003	0,0003
Inertia of ball screw (jsp)	[kgm²/m]	1,13 × 10 ⁻⁵	1,13 × 10 ⁻⁵	8,46 × 10 ⁻⁵	8,46 × 10 ⁻⁵	8,46 × 10 ⁻⁵	2,25 × 10 ⁻⁴	2,25 × 10 ⁻⁴	6,34 × 10 ⁻
Dynamic load rating of ball screw (Cx) 05 mm lead 10 mm lead 20 mm lead 40 mm lead 50 mm lead Dynamic load rating of	[N] [N]	4400 - - - -	4400 - - - -	10500 - 11600 - 8400	10500 - 11600 - 8400	10500 - - - -	12300 13200 13000 - 15400	12300 13200 13000 - 15400	21500 33400 29700 14900 -
ball guide (Cy)		2 × 2650	2 × 2650	4 × 11495	2 × 12964	4 × 11495	4 × 14356	2 × 18723	4 × 18723
Dynamic load rating of ball guide (Cz)	[N]	2 × 3397	2 × 3397	4 × 10581	2 × 11934	4 × 10581	4 × 13739	2 × 17919	4 × 17919
Distance between ball guide carriages (Lx)	[mm]	87	136	141,7	-	141,7	154	-	186
Distance between ball guide carriages (Ly)	[mm]	-	-	35	35	35	49,75	49,75	80,75
Parameter		WV60		WV80	W	/120	MLSM60D	r	ALSM80D
Geometrical moment of inertia of the profile (ly)	[mm ⁴]	5,8 × 10 ⁵	i	1,85 × 10 ⁶	7,7	× 10 ⁶	1,19 × 10 ⁶	:	3,77 × 10 ⁶
Geometrical moment of inertia of the profile (Iz)	[mm ⁴]	5,9 × 10 ⁵	i	1,94 × 10 ⁶	9,4	× 10 ⁶	1,08 × 10 ⁷		4,71 × 10 ⁷
Friction factor of the guide system (μ)		no guide	s	no guides	no g	uides	0,1		0,1
Efficiency of the unit		0,8		0,8	0	,8	0,8		0,8
Bending factor (b)		0,0003		0,0003	0,0	003	0,0003		0,0003
Inertia of ball screw (jsp)	[kgm²/m]	8,46 × 10	-5	2,25 × 10 ⁻⁴	6,34	× 10 ⁻⁴	2,25 × 10 ⁻⁴	(5,34 × 10 ⁻⁴
Dynamic load rating of ball screw (Cx) 05mm lead 10mm lead 20mm lead 25mm lead 40mm lead 50mm lead	[N]	10500 - 11600 - 8400		12300 13200 13000 - 15400	33 29 14	500 400 700 900 -	12300 13200 13000 - - 15400		21500 33400 29700 - 14900 -
Dynamic load rating of ball guide (Cy)	[N]	no guide	s	no guides	no g	uides	4 × 13770		4 × 17965
Dynamic load rating of ball guide (Cz)	[N]	no guide	s	no guides	no g	uides	4 × 13770		4 × 17965
Distance between ball guide carriages (Lx)	[mm]	no guide	s	no guides	no g	uides	163		185
Distance between ball	[mm]						105		164

Linear Motion Systems with Ball Screw and Slide Guides

Technical Data

Parameter	M55	M75	M100
Geometrical moment of [mm ⁴] inertia of the profile (ly)	4,27 × 10 ⁵	$1.9 imes 10^6$	5,54 × 10 ⁶
Geometrical moment of [mm4] inertia of the profile (lz)	3,4 × 10 ⁵	1,15 × 10 ⁶	3,86 × 10 ⁶
Friction factor of the guide system (μ)	0,15	0,15	0,15
Efficiency ball nut unit composite nut unit	0,8 0,5	0,8 0,5	0,8 0,5
Bending factor (b)	0,0005	0,0005	0,0005
Inertia of ball screw (jsp) [kgm²/r] 4,1 × 10 ⁻⁵	1,6 × 10 ⁻⁴	2,5 × 10 ⁻⁴
Dynamic load rating of [N] ball screw (Cx) 05 mm lead 05,8 mm lead 08 mm lead 10 mm lead 12,7 mm lead 20 mm lead 25 mm lead 32 mm lead	9300 5420 - 15400 - 1900 - 2000	10400 - - 17960 10400 - -	12500 - - 20600 - - 11800 -

Linear Motion Systems with Belt Drive and Ball Guides

Technical Data

Parameter		WH40	WM60Z	WM80Z	M55	M75	M100	MLSM80Z
Geometrical moment of inertia of the profile (ly)	[mm ⁴]	12,6 × 10 ⁴	5,62 × 10 ⁵	1,85 × 10 ⁶	4,59 × 10 ⁵	1,9 × 10 ⁶	5,54 × 10 ⁶	3,77 × 10 ⁶
Geometrical moment of inertia of the profile (Iz)	[mm⁴]	15,3 × 10 ⁴	5,94 × 10 ⁵	1,94 × 10 ⁶	3,56 × 10 ⁵	1,15 × 10 ⁶	3,86 × 10 ⁶	4,71 × 10 ⁷
Friction factor of the guide system (µ)		0,05	0,1	0,1	0,02	0,02	0,02	0,1
Efficiency of the unit		0,85	0,85	0,85	0,95	0,95	0,95	0,85
Bending factor (b)		0,0005	0,0005	0,0005	0,0005	0,0005	0,0005	0,0005
Specific mass of belt	[kg/m]	0,032	0,074	0,14	0,09	0,16	0,31	0,517
Inertia of pulleys (Jsyn)	[kgm ²]	8,8 × 10 ⁻⁶	$2,13 \times 10^{-5}$	1,12 × 10 ⁻⁴	1,7 × 10 ⁻⁵	6,8 × 10 ⁻⁵	8,5 × 10 ⁻⁵	5,077 × 10 ⁻⁴
Dynamic load rating of ball guide (Cy)	[N]	2 × 2650	2 × 12964	4 × 18723 (2 × 18723) ¹	2 × 2717	2 × 8206	2 × 13189	4 × 17965
Dynamic load rating of ball guide (Cz)	[N]	2 × 3397	2 × 11934	4 x 13739 (2 x 17919)	2 × 3484	2 × 15484	2 × 24885	4 × 17965
Distance between ball guide carriages (Lx)	[mm]	72	-	154 (-)	78	96	140	185
Distance between ball guide carriages (Ly)	[mm]	-	35	49,75	-	-	-	164

¹ Value in brackets = for short carriage.

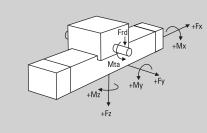
Linear Motion Systems with Belt Drive and Slide Guides

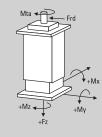
Technical Data

Parameter		M50	M55	M75	M100
Geometrical moment of inertia of the profile (ly)	[mm ⁴]	2,61 × 10 ⁵	4,59 × 10 ⁵	1,9 × 10 ⁶	5,54 × 10 ⁶
Geometrical moment of inertia of the profile (lz)	[mm ⁴]	2,44 × 10 ⁵	3,56 × 105	1,15 × 10 ⁶	3,86 × 10 ⁶
Friction factor of the guide system (µ)		0,15	0,15	0,15	0,15
Efficiency of the unit		0,85	0,85	0,85	0,85
Bending factor (b)		0,0005	0,0005	0,0005	0,0005
Specific mass of belt	[kg/m]	0,086	0,09	0,16	0,31
Inertia of pulleys (Jsyn)	[kgm²]	3,1 × 10 ⁻⁵	1,7 × 10 ⁻⁵	6,8 × 10 ⁻⁵	8,5 × 10 ⁻⁵

Linear Motion Systems with Belt Drive and Wheel Guides

Technical Data


Parameter		WH50	WH80	WH120	MLSH60Z
Geometrical moment of inertia of the profile (ly)	[mm⁴]	3,3 × 10⁵	1,93 × 10 ⁶	6,69 × 10 ⁶	1,29 × 10 ⁶
Geometrical moment of inertia of the profile (lz)	[mm ⁴]	2,65 × 10 ⁵	1,8 × 10 ⁶	6,88 × 10 ⁶	$1,2 \times 10^7$
Friction factor of the guide system (µ)		0,1	0,1	0,1	0,1
Efficiency of the unit		0,85	0,85	0,85	0,85
Bending factor (b)		0,0005	0,0005	0,0005	0,0005
Specific mass of belt	[kg/m]	0,055	0,21	0,34	0,119
Inertia of pulleys (Jsyn)	[kgm²]	1,928 × 10⁻⁵	2.473 × 10 ⁻⁴	1,004 × 10 ⁻³	4,604× 10 ⁻⁵
Dynamic load rating of wheel guide (Cy)	[N]	-	-	-	4 × 1266
Dynamic load rating of wheel guide (Cz)	[N]	4 × 1270	4 × 3670	4 × 16200	4 × 1266
Distance between carriage wheels (Lx)	[mm]	198	220	180	109
Distance between carriage wheels (Ly)	[mm]	39	65	97	102,5


Linear Lifting Systems

Technical Data

Parameter		WHZ50	WHZ80	Z2	Z3
Geometrical moment of inertia of the profile (lx)	[mm ⁴]	-	-	1,87 × 10 ⁷	1,87 × 107
Geometrical moment of inertia of the profile (ly)	[mm ⁴]	3,3 × 105	1,93 × 10 ⁶	2,19 × 10 ⁷	2,19 × 10 ⁷
Geometrical moment of inertia of the profile (Iz)	[mm⁴]	2,65 × 10 ⁵	1,8 × 10 ⁶	-	-
Dynamic load rating of ball screw (Fx)	[N]	belt drive	belt drive	-	-
Dynamic load rating of ball screw (Fz) ball screw ø 25 lead 10 mm ball screw ø 25 lead 25 mm ball screw ø 32 lead 10 mm	[N			21248 11182 47200	21248 11182 47200
Friction factor of the guide system (μ)		0,1	0,1	0,15	0,15
Efficiency of the unit		0,85	0,85	0,8	0,8
Specific mass of belt	[kg/m]	0,055	0,119	-	-
Inertia of pulleys (Jsyn)	[kgm²]	6,906 × 10⁻⁵	5,026 × 10 ⁻⁴	-	-
Inertia of ball screw (jsp) ball screw ø 25 lead 10 ball screw ø 25 lead 25 ball screw ø 32 lead 10	[kgm²/m]	- - -	- - -	2,1 × 10 ⁻⁴ 2,6 × 10 ⁻⁴ 6,43 × 10 ⁻⁴	$2,1 \times 10^4$ $2,6 \times 10^4$ $6,43 \times 10^4$
Dynamic load rating of ball guide (Cx)	[N]	-	-	slide guide	slide guide
Dynamic load rating of ball guide (Cy)	[N]	4 × 1270	4 × 3670	slide guide	slide guide
Distance between ball guide carriages (Lx)	[mm]	198	220	-	-
Distance between ball guide carriages (Ly)	[mm]	39	65	slide guide	slide guide
Distance between ball guide carriages (Lz)	[mm]	-	-	slide guide	slide guide

Definition of forces

Distance between ball

guide carriages (Lx) Distance between ball

guide carriages (Ly) Dynamic rating of

the ball bushing

[mm]

[mm]

[N]

Additional Technical Data

Linear Rod Units

Technical Data						
Parameter		WZ60	WZ80			
Geometrical moment of inertia of the profile (ly)	[mm ⁴]	5,8 × 10 ⁵	1,85 × 10 ⁶			
Geometrical moment of inertia of the profile (lz)	[mm ⁴]	5,9 × 10 ⁵	1,94 × 10 ⁶			
Friction factor of the guide system (µ)		0,1	0,1			
Efficiency of the unit		0,8	0,8			
Inertia of ball screw (jsp) O5 mm lead 10 mm lead 20 mm lead 25 mm lead 32 mm lead 40 mm lead 50 mm lead	[kgm²/m]	8,46 × 10 ⁻⁵ - 8,46 × 10 ⁻⁵ - - - 8,46 × 10 ⁻⁵	2,25 × 10 ⁻⁴ 2,25 × 10 ⁻⁴ 2,25 × 10 ⁻⁴ - - 2,25 × 10 ⁻⁴			
Dynamic load rating of ball screw (Cx) 05 mm lead 10 mm lead 20 mm lead 25 mm lead 32 mm lead 40 mm lead 50 mm lead	[N]	10500 - 11600 - - - 8400	12300 13200 13000 - - - 15400			
Dynamic load rating of ball guide (Cy)	[N]	2 × 12964	2 × 18723			
Dynamic load rating of ball guide (Cz)	[N]	2 × 11943	2 × 17919			

_

35

8300

_

50

13700

Linear Motion Systems with Ball Screw Drive and Ball Guides

WM40S, WM40D, WM60S, WM60D, WM60X, WM80S, WM80D, WM120D

1	2	3	4	5	6	7	8	9	10
WM06D	20	LX	ZZ6	-02545	-03715	Α	Ζ	0520	S1

1. Type of unit

- WM04S = WM40S unit with single ball nut WM04D = WM40D unit with double ball nuts WM06S = WM60S unit with single ball nut WM06D = WM60D unit with double ball nuts WM06X = WM60X unit with left/right screw WM08S = WM80S unit with single ball nut WM08D = WM80D unit with double ball nuts
- WM12D = WM120D unit with double ball nuts

2. Screw lead¹

- 05 = 5 mm
- 10 = 10 mm
- 20 = 20 mm
- 40 = 40 mm
- 50 = 50 mm

3. Transmission type

- LX = inline style, directly coupled, RediMount flange
- SX = inline style, directly coupled, no RediMount flange

4. RediMount motor ID code

- vvw = alphanumeric motor code for suitable RediMount flange when motor is known
- 999 = RediMount code used when motor is unknown
- XXX = for units without RediMount flange

5. Maximum stroke (Smax)

- xxxxx = distance in mm

6. Total length of unit (L tot)

- yyyyy = distance in mm

7. Drive shaft / RediMount configuration²

- A = single shaft without key way
- C = single shaft with key way or RediMount G = double shafts, first without key way and
- second for encoder
- I = double shafts, first with key way or RediMount and second for encoder³

8. Carriage configuration⁴

- N = single standard carriage
- $S = single \ short \ carriage$
- L = single long carriage
- Z = double standard carriages
- Y = double short carriages
- M = double long carriages

9. Distance between double carriages (Lc)

0000 = always for single carriages zzzz = distance in mm

10. Protection option⁵

S1 = wash down protection (not available for WM04 units)

¹See table below for available combinations of units and ball screw leads.

Tune of unit	Avai	lable s	crew	leads	[mm]
Type of unit	5	10	20	40	50
WM04S	х				
WM04D	х				
WM06S	х		х		х
WM06D	х		х		х
WM06X	х				
WM08S	х	х	х		х
WM08D	х	х	х		х
WM12D	х	х	х	х	

²See below for the definition of shafts.

Single and double shafts with RediMount

Single and double shafts without RediMount

³Drive shaft configuration I not available for WM 40.

⁴See table below for available combinations of units and carriage types.

Tune of unit	Av	ailat	ole ca	rriag	e typ	es
Type of unit	Ν	S	L	Ζ	Y	Μ
WM04S	х			х		
WM04D			х			х
WM06S		х			х	
WM06D	х		х	х		
WM06X	х	х	х			
WM08S		х			х	
WM08D	х		х	х		
WM12D	х		х	х		

⁵Leave position blank if no additional protection is required.

Note! for ordering of options type EN, ES, KRG, RT, ADG and MGK, see accessory index on page 131.

Linear Motion Systems with Ball Screw Drive and No Guides

WV60, WV80, WV120

1	2	3	4	5	6	7	8	9	10
WV08D	20	SX	XXX	-02745	-03295	G	N	0000	

1. Type of unit

WV06D = WV60 unit WV08D = WV80 unit WV12D = WV120 unit

2. Ball screw lead¹

- 05 = 5 mm 10 = 10 mm 20 = 20 mm 40 = 40 mm
- 40 = 40 mm50 = 50 mm

3. Transmission type

- LX = inline style, directly coupled, RediMount flange
- SX = inline style, directly coupled, no RediMount flange

4. RediMount motor ID code

- vvw = alphanumeric motor code for suitable RediMount flange when motor is known
- 999 = RediMount code used when motor is unknown
- XXX = for units without RediMount flange

Note! for ordering of options type EN, ES, KRG, RT, ADG and MGK, see accessory index on page 131.

5. Maximum stroke (Smax)

- xxxxx = distance in mm

6. Total length of unit (L tot)

- yyyyy = distance in mm

7. Drive shaft / RediMount configuration²

A = single shaft without key way

- C = single shaft with key way or RediMount
- G = double shafts, first without key way and second for encoder
- I = double shafts, first with key way or RediMount and second for encoder³

8. Carriage configuration

 $N=\mbox{single}$ standard carriage

9. Distance between double carriages (Lc) 0000 = always for single carriages

10. Protection option³

S1 = wash down protection

¹ See table below for available combinations of units and ball screw leads.

Type of unit	Available screw leads [mm]									
Type of unit	5	10	20	40	50					
WV06D	х		х		х					
WV08D	х	х	х		х					
WV12D	х	х	х	х						

²See below for the definition of shafts.

Single and double shafts with RediMount

Single and double shafts without RediMount

³Leave position blank if no additional protection is required.

Linear Motion Systems with Lead or Ball Screw Drive and Ball Guides

MLSM60D, MLSM80D

1	2	3	4	5	6	7	8	9
MLSM06D	20	LX	PP1	-03800	-04645	С	L	0000

1. Type of unit

MLSM06D = MLSM60 unit MLSM08D = MLSM80 unit

2. Ball screw lead

- 05 = 5 mm 10 = 10 mm 20 = 20 mm 40 = 40 mm
- 50 = 50 mm

3. Transmission type

- LX = inline style, directly coupled, RediMount flange
- SX = inline style, directly coupled, no RediMount flange

4. RediMount motor ID code

- vvw = alphanumeric motor code for suitable RediMount flange when motor is known
- 999 = RediMount code used when motor is unknown
- XXX = for units without RediMount flange

5. Maximum stroke (Smax)

- xxxxx = distance in mm

6. Total length of unit (L tot)

- yyyyy = distance in mm

7. Drive shaft / RediMount configuration²

A = single shaft without key way

- C = single shaft with key way or RediMount
- G = double shafts, first without key way and second for encoder
- I = double shafts, first with key way or RediMount and second for encoder³

8. Carriage configuration

N = single standard carriage

- L = single long carriage
- Z = double standard carriages

9. Distance between double carriages (Lc)

- 0000 = always for single carriages
- zzzz = distance in mm

¹See table below for available combinations of units and ball screw leads.

Tuno of unit	Avail	able s	crew	leads	[mm]
Type of unit	5	10	20	40	50
MLSM06D	х		х		х
MLSM08D	х	х	х	х	

² See below for the definition of shafts. Single and double shafts with RediMount

Single and double shafts without RediMount

Linear Motion Systems with Ball Screw Drive and Ball Guides

M55, M75, M100

1	2	3	4	5	6	7	8	9	10
MF07S	05	LX	MC8	-01000	-01500	Х	N	0000	S1

1. Type of unit

MF06S = M55 unit, ball guides, ball screw MF07S = M75 unit, ball guides, ball screw MF10S = M100 unit, ball guides, ball screw

2. Screw lead and tolerance class¹

- 05 = 5 mm
- 10 = 10 mm
- 12 = 12,7 mm
- 20 = 20 mm
- 25 = 25 mm

3. Transmission type

- LX = inline style, directly coupled, RediMount flange
- SX = inline style, directly coupled, no RediMount flange

4. RediMount motor ID code

- vvw = alphanumeric motor code for suitable RediMount flange when motor is known
- 999 = RediMount code used when motor is unknown
- XXX = for units without RediMount flange

5. Maximum stroke (Smax)

- xxxxx = distance in mm

6. Total length of unit (L tot)

- yyyyy = distance in mm

7. Screw supports

- X = no screw supports
- S = single screw supports
- D = double screw supports

8. Carriage configuration

N = single standard carriage Z = double standard carriages

9. Distance between carriages (Lc)

0000 = for all single standard carriage units zzzz = distance in mm between carriages

10. Protection option²

S1 = wash down protection

¹ See table below for available combinations of units and ball screw type, lead and tolerance.

Ball	٦	Type of uni	t
screw type	M55	M75	M100
05	х	х	х
10	х		х
12		х	
20	х	х	
25			х

²Leave position blank if no additional protection is required.

Linear Motion Systems with Lead or Ball Screw Drive and Ball Guides

2HB10,	, 2HB20)												
1	2	3	4	5	(6	7	8	9	10	11			
2HB10	HO	N1285	-038	Ν	00	01	Α	0	Α	0	0			
1. Type of un 2HB10 = 2HE 2HB20 = 2HE	B10 unit					7. Ball guide rail coating option A = standard D = Duralloy								
G0 = 16 mm,	5 mm, preloa	ead and nut ty aded (2HB10 o baded (2HB10	nly)			 8. Ball guide carriage coating option 0 = standard 1 = Duralloy 								
		ded (2HB20 o oaded(2HB20				9. Profile cover option								
		baded (2HB20 baded (2HB20				A = none B = bellows (bellows will reduce stroke length app. 28%) C = shrouds								
3. Ordering	•													
N x x x x x = d	listance in mi	m					ardware opt i lloy plated	on						
4. Y-distanc	e					1 = stainless steel								
		in mm betwee	en motor end	plate to first s	et of									
	nting holes on lard distance	2HB10 in mm betwee	an motor end	nlate to first s	et of	11. Home and end of stroke sensor option 0 = no sensors								
	nting holes on				0101		ome sensor, I	NPN type						
	-	n mm between	motor end p	ate to first se	t of			sensors, NPN	type					
moui	nting holes							of stroke sen	sors, NPN typ	De				
5. Brake opt	ion						ome sensor, I nd of stroke s	PNP type sensors, PNP	type					
N = no brake								of stroke sen		е				
B = brake														
001 = NEMA 002 = NEMA zzz = consu	. 34 It www.Linea	o de IrMotioneering RediMount m	-	nplete list of										

Linear Motion Systems with Lead or Ball Screw Drive and Ball Guides

2RB12	, 2RB16	6											
1	2	3	4	5	6	7	8	9	10	11			
2RB12	JO	N1000	-100	Ν	002	В	0	Α	0	0			
G0 = 16 mm, H0 = 16 mm, I0 = 20 mm, J0 = 20 mm,	312 unit 316 unit 5 mm, preloa 10 mm, preloa 5 mm, preloa 10 mm, preloa 10 mm, preloa	ead and nut ty aded (2RB12 o baded (2RB12 ded (2RB16 or baded (2RB16	nly) only) nly) only)		A = B = C = E = 8. B 0 = 1 =	 7. Ball guide shaft coating option A = standard, 60 Case B = stainless steel (440C) C = chrome plated E = armoloy 8. Bearing option 0 = standard 1 = corrosion resistance 							
K0 = 20 mm,	25 mm, preid	oaded (2RB16	only)			rofile cover o p none	otion						
3. Ordering	-				B =	B = bellows (bellows will reduce stroke length app. 28%)							
N x x x x = dis	stance in mm	1			10.	10. Hardware option							
4. Y-distanc	-				0 =	0 = alloy plated							
	lard distance Iting holes on	in mm betwee	en motor end	plate to first s	et of 1 = :	1 = stainless steel							
- 100 = stand	0	in mm betwee	en motor end	plate to first s		Home and end no sensors	of stroke sen	sor option					
		n mm between	motor end pl	ate to first set		nome sensor, l							
mou	nting holes					end of stroke s home and end			10				
5. Brake opt	ion					nome sensor, l							
N = no brak	9					end of stroke s							
B = brake					6 =	nome and end	of stroke sen	sors, PNP typ	e				
6. RediMour 001 = NEMA 002 = NEMA		ode											

zzz = consult www.LinearMotioneering.com for complete list of available standard RediMount motor flanges

Linear Motion Systems with Lead or Ball Screw Drive and Ball Guides

MS25,	MS33										
1	2	3	4	5	6	6	7	8	9	10	11
MS25	LC	N0300	-056	Ν	50)5	Α	0	Α	0	0
LA = MS25, LB = MS25, LC = MS25, LC = MS25, LF = MS25, LF = MS25, LF = MS25, LI = MS25, LI = MS25, LI = MS25, LJ = MS33, LC = MS33, LC = MS33, LF = MS33, LF = MS33, LF = MS33, LF = MS33, LF = MS33, LJ = M	25 unit 33 unit ew diameter, 0,25 inch, 0,02 0,25 inch, 0,02 0,25 inch, 0,02 0,25 inch, 0,22 0,25 inch, 0,22 0,25 inch, 0,22 0,25 inch, 0,25 0,25 inch, 0,50 0,25 inch, 0,50 0,25 inch, 1,00 0,25 inch, 2,0 r 0,25 inch, 2,0 r 0,375 inch, 0,7 0,375 inch, 0,7 0,375 inch, 0,7 0,375 inch, 0,7 0,375 inch, 0,2 0,375 inch, 0,2 0,375 inch, 0,2 0,375 inch, 0,2 0,375 inch, 1,2 0,375 inch, 2,6 Iength (L) istance in mm 20 20 20 20 20 20 20 20 20 20	in mm betwee MS25 in mm betwee	ed ed ed ed ed ed ed ed led led led led	plate to first s	et of	N = r 6. Re 505 = 001 = zzz = 7. Lin A = 6 B = s C = c 8. Be 0 = s 1 = c 9. Pr A = r B = t 10. H 0 = a 1 = s 11. H 0 = n 7 = h	available standard available standard stainless stee chrome plated caring type op tandard corrosion resist ofile cover op bellows (bello ardware opti lloy plated tainless steel one and end o home or en come position	or ID code w.LinearMotic andard Redilv hafting option (440C) d otion stant otion ws will reduc ion of stroke lim d of stroke lim	lount motor fl n e stroke leng it switch opti	anges th app. 28%)	list of

Linear Motion Systems with Lead or Ball Screw Drive and Ball Guides

2DB08, 2DB12, 2DB16 1 2 3 4 5 6 7 8 9 10 11 **2DB12** N0250 -300 Ν 002 Δ Δ 0 FO 6. RediMount motor ID code 1. Type of unit 2DB08 = 2DB08 unit 001 = NEMA 23 2DB12 = 2DB12 unit 002 = NEMA 34 zzz = consult www.LinearMotioneering.com for complete list of 2DB16 = 2DB16 unit available standard RediMount motor flanges 2. Screw type, diameter, lead and nut type A0 = leadscrew, 0.375 in, 0.100 in, preloaded (2DB08 only) 7. Ball guide shaft coating option B0 = leadscrew, 0.375 in, 0.250 in, preloaded (2DB08 only) A = standard, 60 Case C0 = leadscrew, 0.375 in, 0.500 in, preloaded (2DB08 only) B = stainless steel (440C) D0 = leadscrew, 0.375 in, 0.750 in, preloaded (2DB08 only) C = chrome plated E0 = leadscrew, 0.375 in, 1.000 in, preloaded (2DB08 only) E = Armoloy F0 = ballscrew, 0.631 in, 0.200 in, non-preloaded (2DB12 only) 8. Bearing option V0 = ballscrew, 0.631 in, 0.200 in, preloaded (2DB12 only) 0 = standardQJ = ballscrew, 0.500 in, 0.500 in, preloaded (2DB12 only) 1 = corrosion resistance G0 = ballscrew, 0.750 in, 0.200 in, non-preloaded (2DB16 only) 9. Profile cover option W0 = ballscrew, 0.750 in, 0.200 in, preloaded (2DB16 only) A = none B = bellows (bellows will reduce stroke length app. 28%) RJ = ballscrew, 0.750 in, 0.500 in, preloaded (2DB16 only) LJ = ballscrew, 0.631 in, 1.0 in, preloaded (2DB16 only) **10. Hardware option** D0 = ballscrew, 20 mm, 5 mm, preloaded (2DB16 only) 0 = alloy plated 3. Ordering length (L) 1 = stainless steel N xxxx = distance in inch (e.g. 0250 = 25 inch) 11. Home and end of stroke sensor option 4. Y-distance 0 = no sensors7 = home- 200 = standard distance in inch between motor end plate to first set of mounting holes for 2DB08 (e.g. 200 = 2 in) 8 = ends of travel - 300 = standard distance in inch between motor end plate to first set of 9 = bothmounting holes for 2DB12 and 2DB16 (e.g. 300 = 3 in) - yyy = custom distance in inch between motor end plate to first set of mounting holes 5. Brake option N = no brakeB = brake

Linear Motion Systems with Ball Screw Drive and Slide Guides

M55, M75, M100

1	2	3	4	5	6	7	8	9	10
MG07S	05	LX	PP2	-01000	-01500	Х	N	0000	S1

1. Type of unit

MG06S = M55 unit, slide guides, ball screw MG07S = M75 unit, slide guides, ball screw MG10S = M100 unit, slide guides, ball screw

2. Screw lead and tolerance class¹

- 05 = 5 mm
- 10 = 10 mm
- 12 = 12,7 mm
- 20 = 20 mm
- 25 = 25 mm

3. Transmission type

- LX = inline style, directly coupled, RediMount flange
- SX = inline style, directly coupled, no RediMount flange

4. RediMount motor ID code

- vvw = alphanumeric motor code for suitable RediMount flange when motor is known
- 999 = RediMount code used when motor is unknown
- XXX = for units without RediMount flange

5. Maximum stroke (Smax)

- xxxxx = distance in mm

6. Total length of unit (L tot)

- yyyyy = distance in mm

7. Screw supports

- X = no screw supports
- S = single screw supports
- D = double screw supports

8. Carriage configuration

- N = single standard carriage
- Z = double standard carriages

9. Distance between carriages (Lc)

0000 = for all single standard carriage units zzzz = distance in mm between carriages

10. Protection option²

S1 = wash down protection

¹ See table below for available combinations of units and ball screw type, lead and tolerance.

Ball	Type of unit						
screw type	M55	M75	M100				
05	х	х	х				
10	х		х				
12		х					
20	х	х					
25			х				

²Leave position blank if no additional protection is required.

Linear Motion Systems with Belt Drive and Ball Guides

WH40

1	2	3	4	5	6	7	8
WH04Z	LX	FB7	-01400	-01755	Н	L	0400

1. Type of unit

WH04Z = WH40 unit

2. Transmission type

LX = inline style, directly coupled, RediMount flange SX = inline style, directly coupled, no RediMount flange

3. RediMount motor ID code

vvw = alphanumeric motor code for suitable RediMount flange when motor is known

999 = RediMount code used when motor is unknown

XXX = for units without RediMount flange

4. Maximum stroke (Smax)

- xxxxx = distance in mm

5. Total length of unit (L tot)

- yyyyy= distance in mm

6. Drive shaft / RediMount flange configuration¹

- A = shaft on left side without key way
- B = shaft on right side without key way
- C = shaft on left side with key way or RediMount
- D = shaft on right side with key way or RediMount
- E = shaft on left side without key way, shaft on right side with key way or RediMount
- F = shaft on left side with key way or RediMount, shaft on right side without key way
- G = shaft on left side without key way, shaft on right side for encoder
- H = shaft on left side for encoder, shaft on right side without key way
- I = shaft on left side with key way or RediMount, shaft on right side for encoder
- J = shaft on left side for encoder,

shaft on right side with key way or RediMount

- L = shaft on left and right side without key way
- M = shaft on left side with key way or RediMount, shaft on right side with key way
- N = shaft on left side with key way,
- shaft on right side with key way or RediMount
- W = hollow shaft on both sides with clamping unit

Note! for ordering of options type EN, ES, KRG, RT, ADG and MGK, see accessory index on page 131.

7. Carriage configuration

- N = single standard carriage
- L = single long carriage
- Z = double standard carriages

8. Distance between double carriages (Lc)

0000 = always for single carriages

zzzz = distance in mm

¹ See below for the definition of shafts. Left, right or both sides with shafts with RediMount

Left or right with RediMount and other side a shaft without RediMount

Left or right without RediMount

Linear Motion Systems with Belt Drive and Ball Guides

1	2	3	4	5		6	-	7	8
WM06Z	LX	AG5	-01400	-01755		H		-	0400
 SX = inline style, 3. RediMount ma vvw = alphanum motor is k 999 = RediMount XXX = for units v 4. Maximum stra 5. Total length of yyyyy = distant 5. Total length of yyyyy = distant 6. Drive shaft / R A = shaft on left B = shaft on left D = shaft on left E = shaft on left Shaft on right F = shaft on left 	IZ unit type directly coupled, F directly coupled, r otor ID code teric motor code for nown it code used when vithout RediMount oke (Smax) ice in mm f unit (L tot) ce in mm f unit (L tot) ce in mm ediMount flange cr side without key way side without key way side with key way side with key way side with key way side with key way	no RediMount flang r suitable RediMoun motor is unknown flange onfiguration ¹ /ay way or RediMount y or RediMount ay, y or RediMount or RediMount,	-	 7. Carriage com N = single stand S = single short L = single long of Z = double stand Y = double short 8. Distance between the standard st	dard carria carriage carriage dard carria t carriage ween doul or single c in mm the definit ides with sha diMount and t RediMount	age ages s ble carria arriages ion of sh fts with Re other side a	afts. diMount a shaft withou	t RediMou	nt
-	t side without key v side without key w			of units and ca	irriage typ	es.			
H = shaft on left	t side for encoder side for encoder, t side without key v	W2V		Type of unit	Availab N S	l e carria L	ge types Z Y		
-	ide with key way o	-		WM06Z	x		х		
-	side for encoder			WM08Z	x x	х	x x		
L = shaft on left a M = shaft on left shaft on righ N = shaft on left shaft on righ W = hollow shaft	t side with key way and right side with side with key way nt side with key way side with key way, nt side with key way t on both sides with	out key way or RediMount, y y or RediMount h clamping unit							

Linear Motion Systems with Belt Drive and Ball Guides

M55, M75, M100

1	2	3	4	5	6	7	8	9
MF10B	LX	999	-01000	-01500	D	N	0000	S1

1. Type of unit

MF06B = M55 unit, ball guides, belt drive MF07B = M75 unit, ball guides, belt drive MF10B = M100 unit, ball guides, belt drive

2. Transmission type

LX = inline style, directly coupled, RediMount flange SX = inline style, directly coupled, no RediMount flange

3. RediMount motor ID code

- vvw = alphanumeric motor code for suitable RediMount flange when motor is known
- 999 = RediMount code used when motor is unknown

XXX = for units without RediMount flange

4. Maximum stroke (Smax)

- xxxxx = distance in mm

5. Total length of unit (L tot)

- yyyyy = distance in mm

6. Drive shaft / RediMount flange configuration¹

- C = shaft on left side with key way or RediMount
- D = shaft on right side with key way or RediMount
- M = shaft on left side with key way or RediMount,
- shaft on right side with key way N = shaft on left side with key way,
 - shaft on right side with key way or RediMount

7. Carriage configuration

- $N=\mbox{single}$ standard carriage
- Z = double standard carriages

8. Distance between carriages (Lc)

0000 = for all single standard carriage units

zzzz = distance in mm between carriages

9. Protection option

S1 = wash down protection (blank if no protection option required).

¹See below for the definition of shafts.

Left, right or both sides with shafts with RediMount

Left or right with RediMount and other side a shaft without RediMount

Left or right without RediMount

Linear Motion Systems with Belt Drive and Ball Guides

MLSM80Z

1	2	3	4	5	6	7	8
MLSM08Z	SX	XXX	-03800	-04645	С	L	0000

1. Type of unit

MLSM08Z = MLSM80 unit

2. Transmission type

LX = inline style, directly coupled, RediMount flange SX = inline style, directly coupled, no RediMount flange

3. RediMount motor ID code

- vvw = alphanumeric motor code for suitable RediMount flange when motor is known
- 999 = RediMount code used when motor is unknown
- XXX = for units without RediMount flange

4. Maximum stroke (Smax)

- xxxxx = distance in mm

5. Total length of unit (L tot)

- yyyyy = distance in mm

6. Drive shaft / RediMount flange configuration¹

- A = shaft on left side without key way
- B = shaft on right side without key way
- C = shaft on left side with key way or RediMount
- D = shaft on right side with key way or RediMount
- E = shaft on left side without key way, shaft on right side with key way or RediMount
- F = shaft on left side with key way or RediMount, shaft on right side without key way
- G = shaft on left side without key way, shaft on right side for encoder
- H = shaft on left side for encoder, shaft on right side without key way
- I = shaft on left side with key way or RediMount, shaft on right side for encoder
- J = shaft on left side for encoder, shaft on right side with key way or RediMount
- L = shaft on left and right side without key way
- M = shaft on left side with key way or RediMount, shaft on right side with key way
- N = shaft on left side with key way, shaft on right side with key way or RediMount
- W = hollow shaft on both sides with clamping unit

7. Carriage configuration

- N = single standard carriage
- L = single long carriage
- Z = double standard carriages

8. Distance between double carriages

0000 = always for single carriages zzzz = distance in mm

¹See below for the definition of shafts.

Left, right or both sides with shafts with RediMount

Left or right with RediMount and other side a shaft without RediMount

Left or right without RediMount

Linear Motion Systems with Belt Drive and Slide Guides

M50, M55, M75, M100

1	2	3	4	5	6	7	8	9
MG07B	LX	DE5	-01000	-01500	D	N	0000	S1

1. Type of unit

MG05B = M50 unit, slide guides, belt drive MG06B = M55 unit, slide guides, belt drive MG07B = M75 unit, slide guides, belt drive MG10B = M100 unit, slide guides, belt drive

2. Transmission type

LX = inline style, directly coupled, RediMount flange SX = inline style, directly coupled, no RediMount flange

3. RediMount motor ID code

vvw = alphanumeric motor code for suitable RediMount flange when motor is known

999 = RediMount code used when motor is unknown

XXX = for units without RediMount flange

4. Maximum stroke (Smax)

- xxxxx = distance in mm

5. Total length of unit (L tot)

- yyyyy = distance in mm

6. Drive shaft / RediMount flange configuration¹

- C = shaft on left side with key way or RediMount
- D = shaft on right side with key way or RediMount
- M = shaft on left side with key way or RediMount,
- shaft on right side with key way N = shaft on left side with key way,
 - shaft on right side with key way or RediMount

7. Carriage configuration

- N = single standard carriage
- Z = double standard carriages (not possible for MG05B)

8. Distance between carriages (Lc)

0000 = for all single standard carriage units

zzzz = distance in mm between carriages (not possible for MG05B)

9. Protection option²

S1 = wash down protection (not possible for MG05B)

S2 = enhanced wash down protection (not possible for MG05B)

¹See below for the definition of shafts.

Left, right or both sides with shafts with RediMount

Left or right with RediMount and other side a shaft without RediMount

Left or right without RediMount

²Leave position blank if no additional protection is required.

Linear Motion Systems with Belt Drive and Wheel Guides

WH50, WH80, WH120

1	2	3	4	5	6	7	8	9
WH08Z	LX	BT8	-02300	-02710	Ν	L	0000	S2
RediMour SX = inline styl no RediM 3. RediMount r vvw = alphanu RediMou 999 = RediMou unknown	0 unit 20 unit 20 unit e, directly couple at flange e, directly couple ount flange motor ID code umeric motor cod unt flange when r unt code used w a without RediMo troke (Smax) ance in mm of unit (L tot)	ed, e for suitable notor is known hen motor is	 A = shaft on left B = shaft on rigit C = shaft on rigit E = shaft on left Shaft on rigit F = shaft on left Shaft on rigit F = shaft on left Shaft on rigit H = shaft on left Shaft on rigit I = shaft on left Shaft on rigit J = shaft on left Shaft on rigit J = shaft on left Shaft on rigit J = shaft on left Shaft on rigit L = shaft on left Shaft on rigit L = shaft on left Shaft on rigit K = hollow shaft Clamping un L = shaft on left Shaft on rigit M = shaft on left Shaft on rigit N = shaft on left Shaft on rigit V = hollow shaft DT/DTR plate 	RediMount flange ft side without key sht side with key wa ht side with key wa ht side with key wa side with key wa side with key wa side with key wa side with key wa ght side for encode side with key wa th side for encode th side with key wa ft on both sides with th side with key wa ft on both sides with th side with key wa ft on both sides fanetary gear opti aft on both sides	ey way (ey way (ey way (ey way (ey way) (ey or RediMount) (ey or RediMount) (ey way) (ey way) (er (er, (ey way) (for RediMount, (er (er, (ey way) (for RediMount) (er (er, (ey way) (for RediMount) (for Micron) (for	 8. Distance be 0000 = always zzzz = distance 9. Protection of S1 = wash dow S2 = enhanced ¹ See below for Left, right or both 1 See below for Left or right with I other side a shaft Left or right with Left or right with Left or right with Left or right with 	ndard carriage carriage ndard carriages tween double ca for single carria ce in mm ption ² vn protection d wash down pro r the definition of r the definition of r the definition of sides with shafts with RediMount and without RediMount	ges tection shafts. h RediMount

Note! for ordering of options type EN, ES, KRG, RT, ADG and MGK, see accessory index on page 131.

Linear Motion Systems with Belt Drive and Wheel Guides

MLSH60Z

1	2	3	4	5	6	7	8
MLSH06Z	SX	XXX	-04500	-05580	D	D	0600

1. Type of unit

MLSH06Z = MLSH60 unit

2. Transmission type

LX = inline style, directly coupled, RediMount flange SX = inline style, directly coupled, no RediMount flange

3. RediMount motor ID code

vvw = alphanumeric motor code for suitable RediMount flange when motor is known

999 = RediMount code used when motor is unknown

XXX = for units without RediMount flange

4. Maximum stroke (Smax)

- xxxxx = distance in mm

5. Total length of unit (L tot)

- yyyyy = distance in mm

6. Drive shaft / RediMount flange configuration¹

- A = shaft on left side without key way
- B = shaft on right side without key way
- C = shaft on left side with key way or RediMount
- D = shaft on right side with key way or RediMount
- E = shaft on left side without key way, shaft on right side with key way or RediMount
- F = shaft on left side with key way or RediMount, shaft on right side without key way
- G = shaft on left side without key way, shaft on right side for encoder
- H = shaft on left side for encoder, shaft on right side without key way
- I = shaft on left side with key way or RediMount, shaft on right side for encoder
- J = shaft on left side for encoder,
 - shaft on right side with key way or RediMount
- L = shaft on left and right side without key way
- M = shaft on left side with key way or RediMount, shaft on right side with key way
- N = shaft on left side with key way, shaft on right side with key way or RediMount

7. Carriage configuration

- N = single standard carriage
- L = single long carriage
- Z = double standard carriages

8. Distance between double carriages

0000 = always for single carriages

zzzz = distance in mm

¹See below for the definition of shafts.

Left, right or both sides with shafts with $\ensuremath{\mathsf{Redi}}\xspace{\mathsf{Mount}}$

Left or right with RediMount and other side a shaft without RediMount

Left or right without RediMount

Linear Lifting Units

WHZ50, WHZ80

1	2	3	4	5	6	7	8	9
WHZ05Z	LX	KB5	-01000	-01410	Α	Ν	0000	
 Type of unit WHZ05Z = WHZ WHZ08Z = WHZ Transmission LX = inline style RediMount inline style no RediMo RediMount m vvw = alphanur RediMount RediMount m vvw = alphanur RediMount RediMount m vxx = for units v Maximum str - xxxxx = distar Total length o - yyyyy = distar 	80 unit type , directly couple t flange , directly couple unt flange otor ID code neric motor cod nt flange when r nt code used w without RediMo oke (Smax) nce in mm of unit (L tot)	ed, e for suitable notor is known hen motor is	 A = shaft on left B = shaft on rigi C = shaft on rigi C = shaft on rigi E = shaft on left shaft on rigi F = shaft on left shaft on rigi G = shaft on left shaft on rigi H = shaft on left shaft on rigi I = shaft on left shaft on rigi I = shaft on left shaft on rigi L = shaft on left shaft on rigi N = shaft on left shaft on rigi N = shaft on left shaft on rigi Mount V = hollow shaft 	RediMount flang t side without key ht side without key ht side with key wa ht side with key w side without key nt side with key w side without key at side without key t side for encoder, nt side for encoder, nt side for encoder, side for encoder, side for encoder, nt side with key way t side for encoder, nt side with key way and right side with t side with key wa ht side with key wa	way y way y or RediMount ray or RediMount way, ay or RediMount, y or RediMount, y way way, or RediMount, r ay or RediMount, r ay or RediMount, ray y, y, y, y, y, y, y, y, y, or Redi- t Micron	 8. Distance be 0000 = always zzzz = distanted in the second sec	ndard carriage carriage ndard carriages tween double c for single carria ce in mm option ² vn protection r the definition c RediMount Up Down ediMount and other	arriages ages If shafts.
Note! for ordering of options typ ee accessory index on page 131		MGK, s	W = hollow sh unit	aft on both sides	s with clamping	² Blank if no ad	luitional protect	ion is required
Z2, Z3								
	1		2		2		Δ	

1	1 2		4		
MGZ3K	25259	-250	450		
1. Type of unit MGZ2K = Z2 unit MGZ3K = Z3 unit		 3. Minimum retracted length (L min) ••• = distance in cm 4. Maximum extended length (L max) 			
2. Ball screw diameter, lead and to 25109 = 25 mm, 10 mm, T9 25259 = 25 mm, 25 mm, T9 32207 = 32 mm, 20 mm, T7	plerance class	••• = distance in cm			

Linear Rod Units

WZ60, WZ80								
1	2	3	5		6			
WZ06S	20	-00350	-00780	С	N			
1. Type of unit WZ06S = WZ60 unit	nax) nm	¹ See table belo of units and so			combin	ations		
WZ08S = WZ80 unit		4. Total length of unit (Type of unit	Available screw leads [mm]				
2. Ball screw lead		- yyyyy = distance in r	nm	Type of unit	5	10	20	50
05 = 5 mm 10 = 10 mm		5. Drive shaft configura	ation	WZ06S	х		х	х
20 = 20 mm		A = shaft without key v	WZ08S	х	х	х	х	
50 = 50 mm		C = shaft with key way						
		6. Extension tube conf N = standard	iguration					

Note! for ordering of options type EN, ES, KRG, RT and MGK, see accessory index on page 131.

Non-driven Linear Motion Systems

WH40N, WH50N, WH80N, WH120N

1	2	3	4	5	6	7	8		
WH04N00	SX	XXX	-04500	-04640	К	K L			
1. Type of unit WH04N00 = WH40N unit WH05N00 = WH50N unit WH08N00 = WH80N unit WH12N00 = WH120N unit			 4. Maximum stroke (Smax) - xxxxx = distance in mm 5. Total length of unit (L tot) - yyyyy = distance in mm 			 7. Carriage configuration N = single standard carriage L = single long carriage Z = double standard carriages 			
2. Transmission type			6. Drive shaft / RediMount flange configuration			8. Distance between double carriages 0000 = always for single carriages			
SX = inline style, directly coupled, no RediMount flange			K = no shaft or RediMount flange			zzzz = distance in mm			
3. RediMount mo XXX = for units v	o tor ID code vithout RediMount	flange							

WM40N, WM60N, WM80N, WM120N

1	2	3	4	5	6	7	8
WM08N00	SX	XXX	-07100	-07210	К	N	0000

1. Type of unit WM04N00 = WM40N unit WM06N00 = WM60N unit WM08N00 = WM80N unit WM12N00 = WM120N unit

2. Transmission type SX = inline style, directly coupled, no RediMount flange

3. RediMount motor ID code XXX = for units without RediMount flange

4. Maximum stroke (Smax)

- xxxxx = distance in mm

5. Total length of unit (L tot)

- yyyyy = distance in mm

6. Drive shaft / RediMount flange configuration K = no shaft or RediMount flange

7. Carriage configuration¹

N = single standard carriage

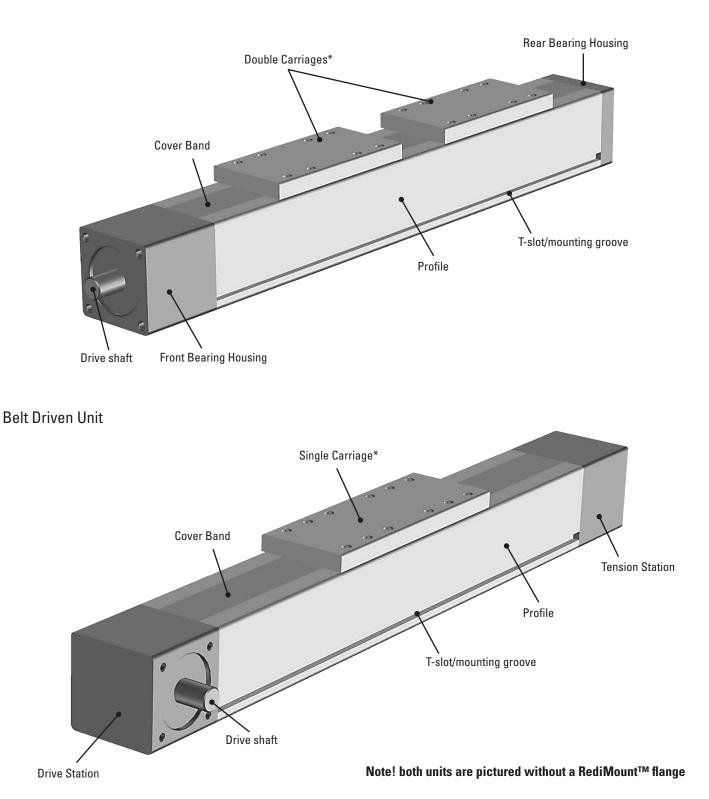
- S = single short carriage
- L = single long carriage
- $\label{eq:constant} \mathsf{Z} = \mathsf{double} \ \mathsf{standard} \ \mathsf{carriages}$
- Y = double short carriages

8. Distance between double carriages 0000 = always for single carriages

zzzz = distance in mm

Tuno of unit	Available carriage types							
Type of unit	Ν	S	L	Ζ	Y			
WM04N	х		х	х				
WM06N	х	х	х	х	х			
WM08N	х	х	х	х	х			
WM12N	х		х	х				

Non-driven Linear Motion Systems


M75N, M100N

1	2	3	4	5	6	7	8	9	
MG10N00	SX	XXX	-04500	-04800	К	Ν	0000	S1	
MG10N00 = M1	5N unit with slid 00N unit with sli 5N unit with ball	de guides	 4. Maximum st - xxxxx = dista 5. Total length 	ance in mm		7. Carriage con N = single star Z = double star	•		
	00N unit with ba	0	- yyyyy = dista			8. Distance between double carriages 0000 = always for single carriages			
	e, directly couple	ed,		RediMount flange RediMount flang	U U	zzzz = distand			
no RediMount flange						6. Protection option ¹ S1 = wash down protection			
3. RediMount n XXX = for units	iotor ID code without RediMo	unt flange				¹ Leave blank if	f no protection o	otion required.	

Terminology

Basic Linear Motion System Terminology

Screw Driven Unit

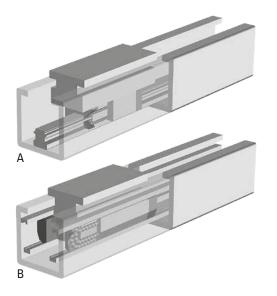
* Both screw and belt driven units can have single or double carriages.

Glossary A - Belt D

Acceleration

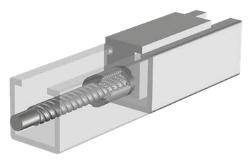
Acceleration is a measure of the rate of speed change going from standstill (or a lower speed) to a higher speed. Please contact customer service if your application is critical to which acceleration rate is acceptable or needed.

Accuracy


There are several types of accuracy and many different factors that will affect the overall accuracy of a system. Also see "Repeatability", "Positioning Accuracy", "Resolution", "Lead Accuracy" and "Backlash".

Backlash

Backlash is the stack up of tolerances (play) within the leadscrew/belt transmission assembly and gearing which creates a dead band when changing directions. The result is that the motor can rotate some before any motion can be seen on the carriage when reversing the direction of the motor rotation. The backlash varies depending of the liner motion system model.

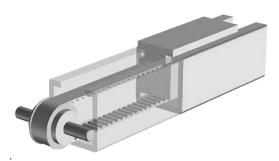

Ball Guides

A ball guide consists of a ball rail and a ball bushing. The ball rail is made of hardened steel and runs along the inside of the profile. The ball bushing is attached to the carriage of the unit and contains balls that roll against the rail. The balls in the bushing can be recirculating or have fixed ball positions depending on the type of ball guide. The recirculating type has a longer life and better load capability while the fixed type typically is much smaller. Thomson uses three major types of ball guides in its linear motion systems. Either the compact single rail type with recirculating ball bushing (A), the stronger double rail type also with recirculating ball bushings (B) or the fixed ball position ball bushings type (not shown) which require very little space and are used in the smallest units. Ball guides offer high accuracy, high loads and medium speed.

Ball Screw Drive

A ball screw is made up of a rotating screw and a moving ball nut. The ball nut is attached to the carriage of the unit. It does not have a normal thread, instead balls circulate inside the nut making it work as an efficient ball bearing that travels along the screw. Ball screws come in a large variety of leads, diameters and tolerance classes. The tolerance class (T3, T5, T7 or T9) indicates the lead tolerance of the screw. The lower the number, the higher the tolerance. High load capability and high accuracy are typical features of ball screw driven units.

Bearing Housing


Screw driven units has two bearing housings, front and rear. The front bearing housing has a drive shaft while the rear has none. Sometimes however the rear housing can have an optional output shaft which is used to connect to an encoder.

Bell House Flange

A bell house flange is used when a motor should be connected directly to the drive shaft of a linear motion system, i.e when it is direct driven. The bell house has the bolt pattern of the motor flange in one end and the bolt pattern of the drive shaft flange in the other while the two shafts are joined by a coupling. Also see "Direct Drive".

Belt Drive

A belt drive consists of a toothed belt which is attached to the carriage of the unit. The belt runs between two pulleys positioned at either end of the profile. One pulley is attached to the motor via the drive shaft in the drive station while the other is mounted in a tension station. The belts are made of plastic reinforced with steel cords. High speeds, long stroke, low noise and low overall weight are typical features of belt driven units

Glossary Belt G - C

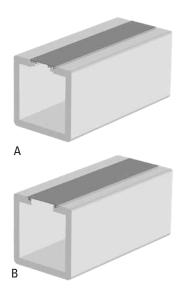
Belt Gear

A belt gear consists of a timing belt that runs between two pulley wheels of different diameters. The difference between the diameters determines the gear ratio. Belt gears are quiet, have medium accuracy and require no maintenance but are susceptible to belt breakage under overload conditions.

Brake

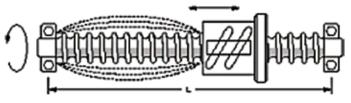
None of the units are equipped with a brake or are self-locking which means that a vertical unit will drop the carriage/load if no external brake (such as a brake in the motor, etc.) is applied to the drive shaft. In the case of belt driven units care must be taken as the carriage/load will drop immediately in the case of a belt breakage. This is particularly important in vertical applications. You also may want to incorporate a brake in to the system to ensure fast and secure stops at an emergency stop or a power failure. In this case the brake should be of the failsafe type, i.e. a brake that is engaged when power is off and lifted when it is on.

Carriage


The carriage is the moving member which travel along the profile of the unit to which the load is attached. Some units can have multiple carriages in order to distribute the weight of the load over a greater distance, this will however reduce the available stroke for a given profile length. There are also units having the option of short or long carriage. The short can carry less weight than a standard one but has a slightly longer stroke for a given profile length while the longer works the other way around. It is possible to fix the carriage(s) to the foundation and let the profile act as the moving member if so desired. This is often the case in vertical applications where you let the profile lift and lower the load.

CE Certificate

Linear motion systems do not need and do therefore not have any CE certification. All Thomson linear motion systems are however designed in accordance with the CE regulations and comes with a manufacturers declaration to prove this. Once the linear motion system is used or made in to a machine it is the responsibility of the end customer to make sure the entire machine that the linear motion system is a part of is in accordance with the applicable CE regulations, produce the documents that proves this and apply a CE mark to the machine.


Cover Band

Cover bands are used on some units to protect them from the ingress of foreign objects through the opening in the profile where the carriage runs and can be made of plastic (A) or stainless steel (B). In the case of plastic the cover band seals the profile by snapping into small grooves running along the carriage opening. In the case of stainless steel the cover band seal the profile magnetically using magnet strips mounted on each side of the carriage opening. Some units also have a self-adjusting cover band tensioning mechanism that eliminates any slack in the cover band that can occur from temperature changes, thus improving the sealing degree and the expected life of the cover band.

Critical Speed

All ball screws have a critical speed where the screw starts to vibrate and eventually bend or warp the screw. The exact limit is a function of how long the screw is and the speed. For some units this means that the allowed maximum speed found in the performance specifications can be higher than the critical speed when the stroke exceeds a certain distance. In this case, either the speed must be reduced to the critical speed, the amount of stroke must be reduced, or you must use the screw support option if the unit in question allows this. Otherwise you must select another unit that can manage the speed at that stroke. The critical speed limits can be found in the "Critical Speed" diagrams on the product pages of the units that this concern.

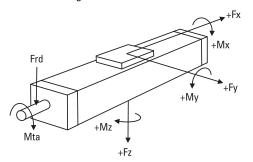
Customization

Despite the large range of linear motion systems offered by Thomson you may not find the exact unit to suit your application. But whatever your need is, Thomson is ready to help you to customize a unit according to your requirements. Please contact customer service for more information.

Cycle

One cycle is when the carriage has travelled back and forth over the complete stroke of the unit one time.

Glossary


D - E

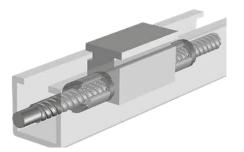
Deceleration

Deceleration is a measure of the rate of speed change going from a higher speed to a lower speed (or standstill). Please contact customer service if your application is critical to which deceleration rate is acceptable or needed.

Definition of Forces

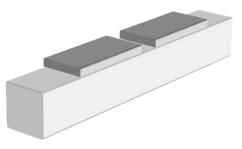
The designations of the forces that acts on the unit are defined on the product page of each unit in the "Definition of Forces" drawing (see example below). Please always use the same definitions whenever communicating with Thomson.

Deflection of the Profile


Some units require support along the whole profile whilst some are self-supporting over a specified span. Further details can be found on the product data pages. The recommended support intervals should be followed to minimize deflection of the unit. The maximum distance between the support points is shown on the product data pages. The deflection of the unit can also be calculated using the information in the "Additional data and calculations" section.

Direct Drive

Direct drive means that there is no gearing between the motor and the drive shaft of the linear motion system. Instead the motor is connected to the unit directly via a coupling and a bell house adapter flange. Also see "Bell House Flange".


Double Ball Nuts

Using double ball nuts will increase the repeatability of the unit. The ball nuts are installed so that they are pre-tensioned against each other eliminating the play between the nuts and the screw. A double nut unit will have a slightly shorter stroke for a given overall length.

Double Carriages

Double carriage units have two carriages which gives them higher load capabilities than single carriage units. When ordering a double carriage unit the distance between the two carriages needs to be defined. This distance is called LA or Lc depending on the model.

Drive Shaft

The drive shaft is the is the shaft to which the motor is connected, either directly, via a bell house flange or via a gear box. There are many sizes and types of drive shafts, such as shafts with or without key way or hollow shafts, depending on the type and size of the unit. Belt driven units can often have two drive shafts (same or different type and size), one on each side of the drive station, while screw driven only have on pointing out of the end of the unit. Customized drive shafts are possible, please contact customer service for more information.

Drive Station

The drive station is the mechanical assembly in one of the ends of a belt driven unit where the drive shaft is situated.

Duty Cycle

All units are designed for a 100% duty cycle. However, where the unit runs at extreme load, speed, acceleration and temperature or for long operating periods the expected life time may be reduced.

Encoder Feedback

Encoders provide a digital output signal in the form of a square shaped pulse train that can be used to determine the position of the extension tube. The encoder signal in a servo motor system is connected to the motion control so that it can control the servo drive and hence close the position feedback loop.

End of Stroke Limit Switches

If a unit runs at speed to the ends of its stroke there is a risk of damage. Damage can be prevented by using end of stroke limit switches to detect and engage a brake and/or cut power to the motor when the unit nears the end of the unit. You must ensure that there is sufficient distance between the end of stroke limit switch and the end of the unit, to allow the carriage to come to a complete stop before colliding with the end. The required stopping distance depends on the speed and the load and will have to be calculated for each application. The stopping distance must be taken into account when defining the necessary stroke.

Glossary

G - M

Guides

Guides are in essence a form of linear bearings on which the carriage(s) travel. Thomson uses three main types of guides that all have different characteristics and which to choose depends on the demands of the application. Also see "Ball Guides", "Slide Guides" and "Wheel Guides".

Idle Torque

Idle torque is the torque needed to move the carriage with no load in it by rotating the drive shaft. The idle torque will vary with the input speed and the idle torque tables on the product pages gives a value for some speeds. The value given in the table is for a unit having a single carriage of standard length. If you need the exact value for another speed, multiple carriages or short/long carriages, please contact our customer service.

Inertia

Inertia is the property of an object to resist speed changes and is dependent on the shape and the mass of the object. The inertia is important when sizing and selecting and also when tuning a servo system to optimum performance. Consult customer service for more information.

Input Shaft

The input shaft is the shaft to which the power source (motor) is connected to on a gear box. Primary shaft is another term for this. Sometimes the drive shaft on a linear unit also is referred to as the input shaft.

Input Speed

Input speed is the rotational speed that the drive shaft/input shaft of a linear motion system or a gear box is subjected to.

Installation and Service Manual

Each linear motion system has an installation and service manual to answer typical questions about mounting and servicing the unit.

Lead Accuracy

Lead accuracy is a measure of how accurate the lead of a ball screw is. For a ball screw with a lead of 25 mm, the screw should in theory move the nut 25 mm per each revolution. In reality there will be a deviation between the expected traveling distance and what is actually achieved. The deviation is typically for a ball screw 0,05 mm per 300 mm of stroke. Contact customer service for more information.

Left/right Moving Carriages

Units with left/right moving carriages have two carriages moving in opposite directions when the drive shaft is rotated. This type of unit has a ball screw where half of the screw has a left hand thread and the other half a right hand thread.

Lifetime Expectancy

When determining the lifetime for a linear motion system it is necessary to evaluate all forces and moments that are acting on the unit. The data and formulas given in this catalogue serve as a basis for this. For a more detailed lifetime calculation please use our sizing and selection software. Please contact us for further guidance.

Linear Lifting System

A linear lifting system is in essence a linear motion system specially designed for vertical lifting applications. Some units can be used in horizontal applications as well under certain criteria. Please contact us if you plan to mount a lifting unit in any other position than vertically with the load carrying plate pointing down.

Linear Motion System

A linear motion system is a mechanical assembly that translates the rotating motion of a motor to the linear motion of a carriage that travel along a load supporting beam/profile. Other names for linear motion systems are linear units, linear drive units and rodless actuators among others.

Load Rating

There are many types of load ratings that all needs to be considered. Normally when you speak about the load you refer to the load that the carriage will move; which is the dynamic load. But there may also be static, side, moment and forces from acceleration, deceleration, gravity and friction that are all equally important. For some units the load and load torque values are given for both the complete unit and the guiding system. The values for the complete unit are the values under which the unit can operate. The values for the guiding system should only be used when comparing different units and do not describe the actual performance of the complete unit.

Maintenance

Most units require lubrication. General lubrication requirements can be found in the general specifications table on the product data pages. The lubrication intervals, grease qualities and specific lubrication instructions can be found in the installation and service manual of each unit. No other regular maintenance is needed except for normal cleaning and inspection. Units with a cover band may also require irregular cover band replacement due to wear. The belt in belt driven units should not require re-tensioning under normal operating conditions.

Manufacturers Declaration

All Thomson linear motion systems comes with a manufacturers declaration to prove that it is built according to the CE regulations.

Mounting

Most units can be mounted in any direction. Any restrictions on mounting positions are shown on the product presentation pages at the beginning of each product category chapter. Even where units may be mounted in any direction there are some considerations. None of the units are self-locking which means that a vertical unit will drop the carriage/load if no

Glossary N - Sc

external brake (such as a brake in the motor, etc.) is applied to the drive shaft of the unit. In the case of belt driven units care must be taken as the carriage/load will drop immediately in the case of a belt breakage. This is particularly important in vertical applications. All ball screw driven units are equipped with a safety nut to prevent the carriage/load being released in case of ball breakage.

Non-driven Linear Motion Systems

A non-driven linear motion system has no drive shaft or any type of transmission. In reality a non-driven linear motion system is a guide that has the same look and outer dimensions as the driven version. Normally a non-driven unit is used together with a parallel working driven unit that are mechanically linked where the non-driven unit help to share to load with the driven one.

Non-guided Linear Motion Systems

A non-guided linear motion system has a drive shaft and a ball screw but no guides. In reality a non-guided linear motion system is a enclosed ball screw assembly with a carriage that has the same look and outer dimensions as the driven version. Using a non-guided unit requires some kind of external guide to which the carriage can be attached.

Operation and Storage Temperature

Operational temperature limits can be found in the performance tables on the product data pages. Units can be stored or transported within the same temperature range. Please contact us if the unit will be exposed to higher/lower temperatures than recommended during storage or transportation.

Output Shaft

The output shaft is the shaft on a gear box that is connected to object being driven by the gear box. Another term for output shaft is secondary shaft.

Packages and Multi Axis Kits

Thomson can offer complete pre-defined packages (linear motion system, gear and servo motor assembled and shipped with servo drive and cables) as well as mounting kits for the creation of two and three axis systems. Please contact us for further information.

Positioning Accuracy

Positioning accuracy is the error between the the expected and actual position and is the sum of all factors that will reduce the accuracy (i.e. repeatability, backlash, resolution, screw/belt accuracy, and the accuracy of the motor, drive and motion control system). Some of these factors, such as backlash and lead accuracy, can sometimes be compensated for in the software of the motion control system being used. Also see "Accuracy".

Position Feedback

The position of the carriage/rod/lifting profile can be obtained in many ways. The most common way is to equip the unit with an encoder or to use a motor which has a built in feedback device (encoder, resolver, etc.). To many units there are encoders or/and encoder mounting kits available. See the accessory chapter.

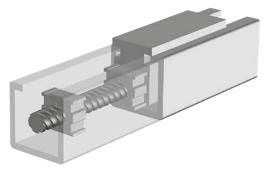
Repeatability

Repeatability is the ability for a positioning system to return to a location when approaching from the same distance, at the same speed and deceleration rate. Some of the factors that affect the repeatability are the angular repeatability of the motor, drive and motion control system, system friction and changes in load, speed and deceleration.

Resolution

Resolution is the smallest move increment that the system can perform. Some of the factors that affect the resolution are the angular repeatability of the motor, drive and motion control system, system friction, the drive train reduction, the lead/type of the ball screw/belt and changes in load, speed and deceleration.

Resolver

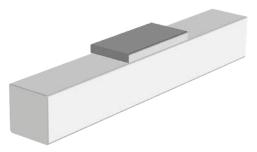

A resolver is basically a type of rotary electrical transformer used for measuring degrees of rotation and are commonly used on AC servo motors as a feedback device to control the commutation of the motor windings. The resolver is mounted to the end of motor shaft and when the motor rotates the resolver will transmit the position and direction of the rotor to the servo drive which then can control the motor. Most servo drives for AC servo motors on the market today can convert the resolver signal in to a pulse train (encoder signal simulation) which can be used by a motion control to determine and control the position of the motor. Also see "Encoder Feedback".

RoHS Compliance

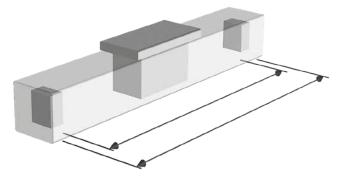
The RoHS directive stands for "the restriction of the use of certain hazardous substances in electrical and electronic equipment". This directive bans the placing on the EU market of new electrical and electronic equipment containing more than agreed levels of lead, cadmium, mercury, hexavalent chromium, polybrominated biphenyl (PBB) and polybrominated diphenyl ether (PBDE) flame retardants. All linear motion systems and accessories sold in the EU are RoHS compliant.

Screw Supports

Screw supports allow screw driven units to travel at high speed even when stroke becomes longer. The supports reduce the unsupported length of the screw, that otherwise would be subjected to vibrations. Screw supports come in single (one screw support on each side of the carriage) or double (two supports on each side) versions. Screw support units will have a slightly shorter stroke for a given overall length.



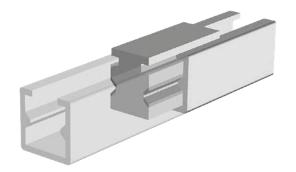
Glossary


Si - W

Single Carriage

Single carriage units have one carriage. Some linear motion system models also have the option of long or short single carriages. The long carriages handle higher loads but will have a longer overall length for a given stroke.

the ends and also allow for some adjustment of the unit postition at the mounting.



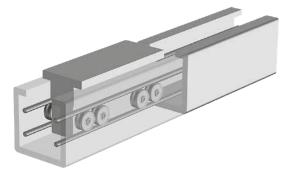
Sizing and Selection

This catalog can give you an overview of what Thomson can offer you and an indication of which products that may suit your application. But in order to get the best solution it is necessary to know your specific application and to carry out detailed sizing and selection calculations. Please contact customer service for further help.

Slide Guides

A slide guide consists of a guide attached to the inside of the profile and a slide bushing attached to the carriage. The guide can be made of different materials (e.g. polished hardened steel, anodized aluminum) while the bushing is made of a polymer material. There are two types of bushings, fixed and prism. Prism bushings can move in relation to the guide which results in longer life and higher load capabilities. Slide bushings are silent, simple, reliable and robust and can be used in dirty and dusty environments. They are also resistant to shock loads, have a long life expectancy and require little or no maintenance.

Stroke


The theoretical maximum stroke (Smax) is the length that the carriage can travel from one end of the unit to the other. However, using the maximum stroke means that the carriage will collide with the ends of the profile. The practical stroke is therefore shorter. We recommend that you specify a unit that have at least 100 mm longer stroke than the maximum stroke you need so that the unit can stop before colliding with

Tension Station

The tension station is the mechanical assembly situated in the opposite end of the drive station on a belt driven unit. The tension station has a mechanism that allows the belt pulley position to be adjusted thus changing the tension of the belt. Adjustment of the belt tension is normally only necessary when replacing a broken or worn out belt with a new.

Wheel Guides

A wheel guide consists of ball bearing wheels that run on a hardened steel rail. Wheel guides are a simple and robust guiding method offering high speeds, high loads and medium accuracy.

Working Environment

All units are designed for use in normal industrial environments. Units which have an open profile (i.e. have no cover band) are more sensitive to dust, dirt and fluids. These units require some kind of cover if they are used in environments where dust, dirt or fluids are present. Wash down or enhanced wash down protection can be ordered for our closed profile units. Please refer to the accessory pages. In all cases where a unit will be exposed to aggressive chemicals, heavy vibrations or other potentially harmful processes we recommend that you contact us for further advice.

EUROPE

United Kingdom Thomson Office 9, The Barns Caddsdown Business Park Bideford, Devon, EX39 3BT Phone: +44 1271 334 500 E-mail: sales.uk@thomsonlinear.com

Germany

Thomson Nürtinger Straße 70 72649 Wolfschlugen Phone: +49 7022 504 403 Fax: +49 7022 504 405 E-mail: sales.germany@thomsonlinear.com

France

Thomson Phone: +33 243 50 03 30 Fax: +33 243 50 03 39 E-mail: sales.france@thomsonlinear.com

Italy

Thomson Via per Cinisello 95/97 20834 Nova Milanese (MB) Phone: +39 0362 366406 Fax: +39 0362 276790 E-mail: sales.italy@thomsonlinear.com

Spain

Thomson E-mail: sales.esm@thomsonlinear.com

Sweden

Thomson Estridsväg 10 29109 Kristianstad Phone: +46 44 24 67 00 Fax: +46 44 24 40 85 E-mail: sales.scandinavia@thomsonlinear.com

SOUTH AMERICA

Brasil Thomson Av. João Paulo Ablas, 2970 Jardim da Glória - Cotia SP - CEP: 06711-250 Phone: +55 11 4615 6300 E-mail: sales.brasil@thomsonlinear.com

USA, CANADA and MEXICO

Thomson 203A West Rock Road Radford, VA 24141, USA Phone: +1 540 633 3549 Fax: 1 540 633 0294 E-mail: thomson@thomsonlinear.com Literature: literature.thomsonlinear.com

ASIA

Asia Pacific Thomson E-mail: sales.apac@thomsonlinear.com

China

Thomson Rm 805, Scitech Tower 22 Jianguomen Wai Street Beijing 100004 Phone: +86 400 606 1805 Fax: +86 10 6515 0263 E-mail: sales.china@thomsonlinear.com

India

Thomson c/o Portescap India Pvt Ltd 1 E, first floor, Arena House Road no 12, Marol Industrial Area, Andheri (E), Mumbai 400093 India E-mail: sales.india@thomsonlinear.com

Japan

Thomson Minami-Kaneden 2-12-23, Suita Osaka 564-0044 Japan Phone: +81 6 6386 8001 Fax: +81 6 6386 5022 E-mail: csjapan@scgap.com

South Korea

Thomson 3033 ASEM Tower (Samsung-dong) 517 Yeongdong-daero Gangnam-gu, Seoul, South Korea (06164) Phone: + 82 2 6001 3223 & 3244 E-mail: sales.korea@thomsonlinear.com

www.thomsonlinear.com

Linear_Motion_Systems_CTUK-0008-05 | 20190115SK Errors and technical alterations reserved. It is the responsibility of the product user to determine the suitability of this product for a specific application. All trademarks property of their respective owners. © 2019 Thomson Industries, Inc.

